Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98939
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈zh_TW
dc.contributor.advisorLin-Chi Chenen
dc.contributor.author吳伊敏zh_TW
dc.contributor.authorYi-Min Wuen
dc.date.accessioned2025-08-20T16:21:52Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-10-
dc.identifier.citation陳林祈, 姚傑文, 陳志豪, & 張家豪. (2016). Patent No. I517989. 臺灣.
陳林祈, 鄭宗記, 方煒, 陳建彰, 顏敬容, 潘慶育, … 呂奇翰. (2020). Patent No. I695166. 臺灣.
Abbott Co. (n.d.). i-STAT EC8+ Cartridge. Retrieved May 19, 2025, from https://www.globalpointofcare.abbott/us/en/product-details/apoc/istat-ec8plus-us.html
Abdel-Aziz, A. M., Hassan, H. H., & Badr, I. H. A. (2022). Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS Omega, 7, 34127–34135.
Amaro López, M. A., & Moreno Rojas, R. (2003). POTASSIUM | properties and determination. In Encyclopedia of food sciences and nutrition (pp. 4644–4650). Elsevier.
Anastasova, S., Radu, A., Matzeu, G., Zuliani, C., Mattinen, U., Bobacka, J., & Diamond, D. (2012). Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection. Electrochimica Acta, 73, 93–97.
Armstrong, R. D., & Horvai, G. (1990). Properties of PVC based membranes used in ion-selective electrodes. Electrochimica Acta, 35, 1–7.
Baioni, A. P., Vidotti, M., Fiorito, P. A., Ponzio, E. A., & de Torresi, S. I. C. (2007). Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir: The ACS Journal of Surfaces and Colloids, 23, 6796–6800.
Bakker, E., & Pretsch, E. (2005). Potentiometric sensors for trace-level analysis. Trends in Analytical Chemistry : TRAC, 24, 199–207.
Bakker, E. (2014). Enhancing ion-selective polymeric membrane electrodes by instrumental control. TrAC Trends in Analytical Chemistry, 53, 98–105.
Baloukas, B., Arvizu, M. A., Wen, R.-T., Niklasson, G. A., Granqvist, C. G., Vernhes, R., … Martinu, L. (2017). Galvanostatic Rejuvenation of Electrochromic WO3 Thin Films: Ion Trapping and Detrapping Observed by Optical Measurements and by Time-of-Flight Secondary Ion Mass Spectrometry. ACS Applied Materials & Interfaces, 9, 16995–17001.
Batrisya Ismail, N. A., Abd-Wahab, F., & Amani Wan Salim, W. W. (2018). Cyclic Voltammetry and Electrochemical Impedance Spectroscopy of Partially Reduced Graphene Oxide - PEDOT:PSS Transducer for Biochemical Sensing. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 330–335. IEEE.
Bodor, S., Zook, J. M., Lindner, E., Tóth, K., & Gyurcsányi, R. E. (2009). Chronopotentiometric method for the assessment of ionophore diffusion coefficients in solvent polymeric membranes. Journal of Solid State Electrochemistry : Current Research and Development in Science and Technology, 13, 171–179.
Borah, M. D., Naik, V. B., Patgiri, R., Bhargav, A., Phukan, B., & Basani, S. G. M. (2020). Supply chain management in agriculture using blockchain and iot. In S. Kim & G. C. Deka (Eds.), Advanced applications of blockchain technology (pp. 227–242). Singapore: Springer Singapore.
Bristow, N., Rengaraj, S., Chadwick, D. R., Kettle, J., & Jones, D. L. (2022). Development of a LoRaWAN IoT Node with Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22239100
Cáceres, G., Rojas, V., López, S., Henríquez, R., Grez, P., Schrebler, R., … Muñoz, E. (2021). Changes in the spectroelectrochemical properties of copper(II) hexacyanoferrate(III) during electrochemical insertion of alkaline ions. Journal of Solid State Electrochemistry : Current Research and Development in Science and Technology, 25, 1881–1888.
Cammann, K. (1979). Measuring Techniques with Ion-Selective Electrodes. In Chemical Laboratory Practice. Working with Ion-Selective Electrodes (pp. 105–120). Berlin, Heidelberg: Springer Berlin Heidelberg.
Cao, Q., Liang, B., Mao, X., Wei, J., Tu, T., Fang, L., & Ye, X. (2021). A Smartwatch Integrated with a Paper‐based Microfluidic Patch for Sweat Electrolytes Monitoring. Electroanalysis, 33, 643–651.
Central weather administration. (2024). 2023 Annual climate report. Central weather administration.
Cheong, Y. H., Ge, L., & Lisak, G. (2021). Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Analytica Chimica Acta, 1162, 338304.
Cho, W.-J., Kim, H.-J., Jung, D.-H., Kim, D.-W., Ahn, T. I., & Son, J.-E. (2018). On-site ion monitoring system for precision hydroponic nutrient management. Computers and Electronics in Agriculture, 146, 51–58.
Cifuentes‐Torres, L., Mendoza‐Espinosa, L. G., Correa‐Reyes, G., & Daesslé, L. W. (2020). Hydroponics with wastewater: a review of trends and opportunities. Water and Environment Journal. https://doi.org/10.1111/wej.12617
Crespo, G. A., & Bakker, E. (2013). Dynamic electrochemistry with ionophore based ion-selective membranes. RSC Adv., 3, 25461.
Criscuolo, F., Hanitra, M. I. N., Taurino, I., Carrara, S., & De Micheli, G. (2021). All-Solid-State Ion-Selective Electrodes: A Tutorial for Correct Practice. IEEE Sensors Journal, 21, 22143–22154.
Dai, Y., Li, W., Qu, X., Liu, J., Yan, S., Ouyang, M., … Zhang, C. (2017). Electrochemistry, electrochromic and color memory properties of polymer/copolymer based on novel dithienylpyrrole structure. Electrochimica Acta, 229, 271–280.
Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53–61.
Fan, Y., Huang, Y., Linthicum, W., Liu, F., Beringhs, A. O., Dang, Y., … Li, B. (2020). Toward Long-Term Accurate and Continuous Monitoring of Nitrate in Wastewater Using Poly(tetrafluoroethylene) (PTFE)-Solid-State Ion-Selective Electrodes (S-ISEs). ACS Sensors, 5, 3182–3193.
Gallardo, M., Elia, A., & Thompson, R. B. (2020). Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agricultural Water Management, 240, 106209.
Gao, L., Tian, Y., Gao, W., & Xu, G. (2024). Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. Sensors (Basel, Switzerland), 24. https://doi.org/10.3390/s24134289
Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., … Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509–514.
Garau, G., Mele, E., Castaldi, P., Lauro, G. P., & Deiana, S. (2015). Role of polygalacturonic acid and the cooperative effect of caffeic and malic acids on the toxicity of Cu(II) towards triticale plants (× Triticosecale Wittm). Biology and Fertility of Soils, 51, 535–544.
Ghahraman Afshar, M., Crespo, G. A., & Bakker, E. (2012). Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode. Analytical Chemistry, 84, 8813–8821.
Gomes, L., Branco, A., Moreira, T., Feliciano, F., Pinheiro, C., & Costa, C. (2016). Increasing the electrical conductivity of electrochromic PEDOT:PSS films – A comparative study. Solar Energy Materials and Solar Cells, 144, 631–640.
Granqvist, C. G., Arvizu, M. A., Qu, H.-Y., Wen, R.-T., & Niklasson, G. A. (2019). Advances in electrochromic device technology: Multiple roads towards superior durability. Surface and Coatings Technology, 357, 619–625.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., … McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. The New Phytologist, 226, 1550–1566.
Güler, E., van Baak, W., Saakes, M., & Nijmeijer, K. (2014). Monovalent-ion-selective membranes for reverse electrodialysis. Journal of Membrane Science, 455, 254–270.
Guzinski, M., Jarvis, J. M., Perez, F., Pendley, B. D., Lindner, E., De Marco, R., … Bishop, J. (2017). PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times. Analytical Chemistry, 89, 3508–3516.
HACH Co. (n.d.). Hydrolab HL7 - Multiparameter Sonde. Retrieved May 19, 2025, from https://www.hach.com.tw/mod/product/index.php?REQUEST_ID=fcdca91c8a7bc8da7350a9602956ca0248a8e8e53cae5afff3da2bb6cafcf178
He, J. (2024). Enhancing productivity and improving nutritional quality of subtropical and temperate leafy vegetables in tropical greenhouses and indoor farming systems. Horticulturae, 10, 306.
Hu, J., Stein, A., & Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 76, 102–114.
Huang, S.-F., Shih, W.-L., Chen, Y.-Y., Wu, Y.-M., & Chen, L.-C. (2021). Ion composition profiling and pattern recognition of vegetable sap using a solid-contact ion-selective electrode array. Biosensors and Bioelectronics: X, 9, 100088.
Information, D. (n.d.). ADS111x Ultra-Small, Low-Power, I2C-Compatible, 860-SPS, 16-Bit ADCs With Internal Reference, Oscillator, and Programmable Comparator.
Ivanišević, I., Milardović, S., Ressler, A., & Kassal, P. (2021). Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors, 9, 333.
Jeon, K. W., & Hayes, J. (2003). Mechanisms and control of nutrient uptake in plants. In International Review of Cytology: A Survey of Cell Biology (p. 73).
Khan, F. A. (2018). A review an hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture, Environment and Food Sciences, 2, 59–66.
Khan, S., Purohit, A., & Vadsaria, N. (2021). Hydroponics: current and future state of the art in farming. Journal of Plant Nutrition, 44, 1515–1538.
Kim, H.-J., Kim, W.-K., Roh, M.-Y., Kang, C.-I., Park, J.-M., & Sudduth, K. A. (2013). Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture, 93, 46–54.
Kim, S.-J., Chiami, K., & Ishii, G. (2006). Effect of ammonium: nitrate nutrient ratio on nitrate and glucosinolate contents of hydroponically-grown rocket salad ( Eruca sativa Mill.). Soil Science and Plant Nutrition, 52, 387–393.
Kirubanand, V. B., Rohini, V., & Laxmankumar, V. (2021). Internet of things in agriculture to revolutionize traditional agricultural industry. ITM Web of Conferences, 37, 01018.
Kitazumi, Y. (2022). Recent development of ion-selective electrodes. Analytical Sciences, 38, 1007–1008.
Kondratyeva, Y. O., Tolstopjatova, E. G., Kirsanov, D. O., & Mikhelson, K. N. (2020). Chronoamperometric and coulometric analysis with ionophore-based ion-selective electrodes: A modified theory and the potassium ion assay in serum samples. Sensors and Actuators B: Chemical, 310, 127894.
Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89, 1056–1065.
Lakshmanan, R., Djama, M., Perumal, S., & Abdulla, R. (2020). Automated smart hydroponics system using internet of things. International Journal of Electrical and Computer Engineering (IJECE), 10, 6389.
Le Bot, J., Adamowicz, S., & Robin, P. (1998). Modelling plant nutrition of horticultural crops: a review. Scientia Horticulturae, 74, 47–82.
Liao, J.-Y., & Ho, K.-C. (2005). A photovoltaic cell incorporating a dye-sensitized ZnS/ZnO composite thin film and a hole-injecting PEDOT layer. Solar Energy Materials and Solar Cells, 86, 229–241.
Lisak, G., Sokalski, T., Bobacka, J., Harju, L., Mikhelson, K., & Lewenstam, A. (2011). Tuned galvanostatic polarization of solid-state lead-selective electrodes for lowering of the detection limit. Analytica Chimica Acta, 707, 1–6.
Liu, S., Ding, J., & Qin, W. (2018). Current pulse based ion-selective electrodes for chronopotentiometric determination of calcium in seawater. Analytica Chimica Acta, 1031, 67–74.
Liu, S., Yin, T., Li, Z., & Wang, J. (2024). Potentiometric/time resolved chronopotentiometric sensing for an all-solid-state ion-selective electrode based on MXene/MWCNTs as solid contact. Sensors and Actuators B: Chemical, 405, 135269.
Li, Jinghui, Zhang, W., & Qin, W. (2023). Trace-level chronopotentiometric detection in the presence of a high electrolyte background using thin-layer ion-selective polymeric membranes. Chemical Communications, 59, 14257–14260.
Li, Jingrui, Abbas, K., Wang, L., Gong, B., Hou, S., Wang, W., … Gao, H. (2023). Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Frontiers in Plant Science, 14, 1228084.
M’rah Helali, S., Nebli, H., Kaddour, R., Mahmoudi, H., Lachaâl, M., & Ouerghi, Z. (2010). Influence of nitrate—ammonium ratio on growth and nutrition of Arabidopsis thaliana. Plant and Soil, 336, 65–74.
Mai, Z., Zhao, H., Wang, K., & Xiao, S. (2023). A Numerical Analytical Model for Multi-Ion Detection Applied to Solid-State Contact Ion-Selective Electrode Array. 2023 2nd International Symposium on Sensor Technology and Control (ISSTC), 156–163. IEEE.
Makarychev-Mikhailov, S., Shvarev, A., & Bakker, E. (2004). Pulstrodes: triple pulse control of potentiometric sensors. Journal of the American Chemical Society, 126, 10548–10549.
Makarychev-Mikhailov, S., Shvarev, A., & Bakker, E. (2006). Calcium pulstrodes with 10-fold enhanced sensitivity for measurements in the physiological concentration range. Analytical Chemistry, 78, 2744–2751.
Maraveas, C., Piromalis, D., Arvanitis, K. G., Bartzanas, T., & Loukatos, D. (2022). Applications of IoT for optimized greenhouse environment and resources management. Computers and Electronics in Agriculture, 198, 106993.
Marchini, E., Caramori, S., Bignozzi, C. A., & Carli, S. (2021). On the Use of PEDOT as a Catalytic Counter Electrode Material in Dye-Sensitized Solar Cells. Applied Sciences, 11, 3795.
Maucieri, C., Nicoletto, C., Os, E. van, Anseeuw, D., Havermaet, R. V., & Junge, R. (2019). Hydroponic Technologies. In S. Goddek, A. Joyce, B. Kotzen, & G. M. Burnell (Eds.), Aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future (pp. 77–110). Cham: Springer International Publishing.
Michalska, A., Dumańska, J., & Maksymiuk, K. (2003). Lowering the Detection Limit of Ion-Selective Plastic Membrane Electrodes with Conducting Polymer Solid Contact and Conducting Polymer Potentiometric Sensors. Analytical Chemistry, 75, 4964–4974.
Michalska, A. (2005). Improvement of Analytical Characteristic of Calcium Selective Electrode with Conducting Polymer Contact. The Role of Conducting Polymer Spontaneous Charge Transfer Processes and Their Galvanostatic Compensation. Electroanalysis, 17, 400–407.
Mnyango, J. I., & Hlangothi, S. P. (2024). Polyvinyl chloride applications along with methods for managing its end-of-life items: A review. Progress in Rubber, Plastics and Recycling Technology. https://doi.org/10.1177/14777606241308652
Mocaër, A., Pillier, F., & Pailleret, A. (2021). Switching of the ion exchange behaviour of PEDOT thin films during a potential cycling: An electrochemical atomic force microscopy study. Electrochimica Acta, 389, 138651.
Montoya, A. P., Obando, F. A., Osorio, J. A., Morales, J. G., & Kacira, M. (2020). Design and implementation of a low-cost sensor network to monitor environmental and agronomic variables in a plant factory. Computers and Electronics in Agriculture, 178, 105758.
Mu, B., Cao, G., Zhang, L., Zou, Y., & Xiao, X. (2021). Flexible wireless pH sensor system for fish monitoring. Sensing and Bio-Sensing Research, 34, 100465.
Mu, S., Yin, T., Luan, F., & Qin, W. (2024). High-redox-capacity solid contact based on ferrocenyl self-assembled monolayer functionalized macroporous gold for an all-solid-state carbonate-selective electrode. Microchemical Journal, 197, 109696.
NT Sensors Co. (n.d.). Multi ION Probe an innovative concept. Retrieved May 19, 2025, from https://www.ntsensors.com/multi-ion-probe/?srsltid=AfmBOoqahttoAwPYnE3i6-3CIg2DoE8UpWr0tNJP8FIN6AU_7KWuV1YQ
Ozer, T., Agir, I., & Henry, C. S. (2022). Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sensors and Actuators B: Chemical, 365, 131961.
Pandey, K., Singh, K. G., & Singh, A. (2023). Multi-Sensors based smart nutrient reuse management system for closed soilless culture under protected cultivation. Computers and Electronics in Agriculture, 204, 107495.
Pande, G. K., Kim, N., Choi, J. H., Balamurugan, G., Moon, H. C., & Park, J. S. (2019). Effects of counter ions on electrochromic behaviors of asymmetrically substituted viologens. Solar Energy Materials and Solar Cells, 197, 25–31.
Park, C., Yoon, H., Zahed, Md. A., Zhang, S., Yoon, S., Kim, D., … Park, J. (2022). A Highly Stable and Flexible Ca2+ Ion-Selective Sensor Based on Treated PEDOT:PSS Transducing Layer. IEEE Sensors Journal, 22, 11213–11221.
Pawłowski, P., Kisiel, A., Michalska, A., & Maksymiuk, K. (2011). Potentiometric responses of ion-selective electrodes after galvanostatically controlled incorporation of primary ions. Talanta, 84, 814–819.
Peel, A. J. (2013). Transport of Nutrients in Plants.
Perera, H., Fordyce, K., & Shvarev, A. (2007). Pulsed galvanostatic control of solid-state polymeric ion-selective electrodes. Analytical Chemistry, 79, 4564–4573.
Pergel, E., Gyurcsányi, R. E., Tóth, K., & Lindner, E. (2001). Picomolar detection limits with current-polarized Pb2+ ion-selective membranes. Analytical Chemistry, 73, 4249–4253.
Peshkova, M. A., Koltashova, E. S., Khripoun, G. A., & Mikhelson, K. N. (2015). Improvement of the upper limit of the ISE Nernstian response by tuned galvanostatic polarization. Electrochimica Acta, 167, 187–193.
Peshkova, M. A., & Mikhelson, K. N. (2013). Solvent polymeric membrane ion-selective electrodes under galvanostatic control: Powerful tool for analysis of extremely diluted samples. Electrochimica Acta, 110, 829–835.
Peshkova, M. A., Sokalski, T., Mikhelson, K. N., & Lewenstam, A. (2008). Obtaining Nernstian response of a Ca(2+)-selective electrode in a broad concentration range by tuned galvanostatic polarization. Analytical Chemistry, 80, 9181–9187.
Pławińska, Ż., Michalska, A., & Maksymiuk, K. (2016). Optimization of capacitance of conducting polymer solid contact in ion-selective electrodes. Electrochimica Acta, 187, 397–405.
Plus Grow Co. (n.d.). VPD Charts in Fahrenheit and Celsius With Leaf Temperature - Pulse Grow. Retrieved December 17, 2024, from Pulse Grow Company Website website: https://pulsegrow.com/pages/vpd-charts-in-fahrenheit-and-celsius
Qileng, A., Peng, H., Yin, T., Lin, X., Zhai, B., Chong, Y., … Liu, Y. (2023). A portable wireless‐sensor system from all‐in‐one sensor array based hybrid solid contact layer for point‐of‐care ion monitoring in river basin. Electroanalysis, 35. https://doi.org/10.1002/elan.202200538
Richa, A., Fizir, M., & Touil, S. (2021). Advanced monitoring of hydroponic solutions using ion-selective electrodes and the internet of things: a review. Environmental Chemistry Letters, 19, 3445–3463.
Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., … Cesco, S. (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10, 923.
Santos, H. S. N., Meira, M. W. P., Ribeiro, F. C., Silva, L. S., Neto, J. A. dos S., Megda, M. X. V., … Pereira, D. G. C. (2022). Nitrogen sources and doses in arugula development. Journal of Agricultural Studies, 14, 62.
Segal, A. W. (2016). NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biology, 6. https://doi.org/10.1098/rsob.160028
Shao, Y., Ying, Y., & Ping, J. (2020). Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chemical Society Reviews, 49, 4405–4465.
Sharma, R., Geranpayehvaghei, M., Ejeian, F., Razmjou, A., & Asadnia, M. (2021). Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta, 235, 122815.
Shvarev, A., & Bakker, E. (2003). Pulsed galvanostatic control of ionophore-based polymeric ion sensors. Analytical Chemistry, 75, 4541–4550.
Shvarev, A., & Bakker, E. (2004). Distinguishing free and total calcium with a single pulsed galvanostatic ion-selective electrode. Talanta, 63, 195–200.
Sihombing, P., Karina, N. A., Tarigan, J. T., & Syarif, M. I. (2018). Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android. Journal of Physics: Conference Series, 978, 012014.
Sokalski, T., Ceresa, A., Zwickl, T., & Pretsch, E. (1997). Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes. Journal of the American Chemical Society, 119, 11347–11348.
Sonego, M., Echeveste, M. E. S., & Galvan Debarba, H. (2018). The role of modularity in sustainable design: A systematic review. Journal of Cleaner Production, 176, 196–209.
Son, J. E., Kim, H. J., & Ahn, T. I. (2020). Hydroponic systems. In Plant Factory (pp. 273–283). Elsevier.
Stelmach, E., Wagner, B., Maksymiuk, K., & Michalska, A. (2024). Finding a perfect match of ion-exchanger and plasticizer for ion-selective sensors. Talanta, 269, 125408.
Szigeti, Z., Vigassy, T., Bakker, E., & Pretsch, E. (2006). Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion-Selective Electrodes. Electroanalysis, 18, 1254–1265.
Tandil, R., Yapson, J., Atmadja, W., Liawatimena, S., & Susanto, R. (2018). Hydroponic nutrient mixing system based on STM32. IOP Conference Series: Earth and Environmental Science, 195, 012052.
Tan, Z., Chen, C.-H., Chae, Y., & Temes, G. C. (2020). Incremental Delta-Sigma ADCs: A Tutorial Review. IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 4161–4173.
Twalla, J. T., Ding, B., Cao, G., Bao, S., Li, M., Chen, X., … Wang, J. (2022). Roles of stomata in gramineous crops growth and biomass production. Cereal Research Communications, 50, 603–616.
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure and Applied Chemistry, 72, 1851–2082.
University of Massachusetts Amherst. (n.d.). Vegetable: Brassicas, Tip Burn | Center for Agriculture, Food, and the Environment at UMass Amherst. Retrieved December 20, 2024, from https://ag.umass.edu/vegetable/fact-sheets/brassicas-tip-burn
Vanamo, U., & Bobacka, J. (2014). Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochimica Acta, 122, 316–321.
Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture, 12, 646.
Wada, T. (2019). Theory and technology to control the nutrient solution of hydroponics. In Plant factory using artificial light (pp. 5–14). Elsevier.
Wang, H., Inukai, Y., & Yamauchi, A. (2006). Root development and nutrient uptake. Critical Reviews in Plant Sciences, 25, 279–301.
Wardak, C., Pietrzak, K., Morawska, K., & Grabarczyk, M. (2023). Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. Sensors (Basel, Switzerland), 23. https://doi.org/10.3390/s23135839
Węgrzyn, K., Kalisz, J., Stelmach, E., Maksymiuk, K., & Michalska, A. (2021). Emission Intensity Readout of Ion-Selective Electrodes Operating under an Electrochemical Trigger. Analytical Chemistry, 93, 10084–10089.
Wen, R.-T., Niklasson, G. A., & Granqvist, C. G. (2015). Sustainable rejuvenation of electrochromic WO3 films. ACS Applied Materials & Interfaces, 7, 28100–28104.
Wu, Y.-M., & Chen, L.-C. (2024). Eliminating the memory effect of a PEDOT solid-contact ion-selective electrode caused by galvanostatic polarization. IEEE Sensors Journal, 1–1.
Wu, Y.-M., Liu, S.-Y., Shi, B.-Y., Peng, J.-Y., Kao, Z.-W., Chen, Y.-Y., … Chen, L.-C. (2023). IoT-interfaced solid-contact ion-selective electrodes for cyber-monitoring of element- specific nutrient information in hydroponics. Computers and Electronics in Agriculture, 214, 108266.
Wu, Y.-M., Liu, S.-Y., Shi, B.-Y., Peng, J.-Y., Kao, Z.-W., Chung, H.-Y., … Chen, L.-C. (2024). Field Study Correlating Nutrient Absorption and Transpiration in Lettuce Hydroponics Using an IoT-Interfaced Solid-State Ion Sensor Array. IEEE Sensors Letters, 1–4.
Yang, J., Ding, A., Zhou, J.-L., Yan, B.-Y., Gu, Z., & Wang, H.-F. (2023). A Floating Capsule Electrochemical System for In Situ and Multichannel Ion-Selective Sensing. Biosensors, 13. https://doi.org/10.3390/bios13100914
Zhang, J., Jiao, X., Du, Q., Song, X., Ding, J., & Li, J. (2021). Effects of vapor pressure deficit and potassium supply on root morphology, potassium uptake, and biomass allocation of tomato seedlings. Journal of Plant Growth Regulation, 40, 509–518.
Zhang, S., Guo, Y., Li, S., Ke, Z., Zhao, H., Yang, J., … Zhang, Z. (2022). Investigation on environment monitoring system for a combination of hydroponics and aquaculture in greenhouse. Information Processing in Agriculture, 9, 123–134.
Zhang, W., Chen, X., Wang, Y., Wu, L., & Hu, Y. (2020). Experimental and modeling of conductivity for electrolyte solution systems. ACS Omega, 5, 22465–22474.
Zook, J. M., Buck, R. P., Gyurcsányi, R. E., & Lindner, E. (2008). Mathematical Model of Current-Polarized Ionophore-Based Ion-Selective Membranes: Large Current Chronopotentiometry. Electroanalysis, 20, 259–269.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98939-
dc.description.abstract本論文聚焦於以固態接觸式離子選擇電極(solid-contact ion-selective electrodes, SCISEs)開發的原位 (in situ) 即時多離子監測系統應用於水耕養液。同時,在系統開發過程中,我們發現若能達到超能斯特斜率的靈敏度(super-Nernstian sensitivity),將有助於提升感測解析度,進而偵測養分濃度的微小變化。考量到 SCISE 在連續監測應用中的需求日益增加,若能直接透過感測裝置本身進行原位性能控制,將是具有潛力的策略。因此,我們開發出一種無記憶效應(memory-free)之極化量測法 (polarization measurement),結合定電流極化與定電位去極化,不僅可提升電位訊號的重現性與靈敏度,也改善其長期穩定性。
水耕栽種因植物養分吸收的動態變化及環境波動,常面臨養分管理上的挑戰。傳統的監測工具(如導電度與 pH 測定)無法量化單一離子濃度。為克服此限制,我們開發了物聯網養分監測系統(IoT Nutrient Sensor System, IoNSS),可即時偵測關鍵巨量離子(鉀、硝酸根、銨根和鈣離子)並將數據上傳至雲端平台。該系統已應用於溫室與植物工廠,並能偵測特定離子吸收情況,同時觀察其與環境因子(如蒸氣壓差 (vapor pressure deficit, VPD)之關聯性。值得注意的是,IoNSS 使我們得以觀察特定離子失衡與生理障礙(如高蒸氣壓差下的鹽分累積或頂燒)之潛在關聯。此外,結果也顯示鉀離子濃度變化可能作為作物蒸散效率的間接指標。此發現突顯了將特定離子感測與微氣候數據整合的重要性,有助於提升診斷準確度並支持精準農業中的決策制定。
雖然物聯網養分監測系統 (IoNSS) 已應用於實際農場中,其解析度與長期穩定性仍受到環境雜訊與 SCISE 本身特性的限制。為解決此問題,我們進一步探索透過定電流極化進行原位電調控,藉由促進離子通量以達成超能斯特靈敏度。然而,我們發現文獻未提及過的現象–電流極化誘導的PEDOT 氧化還原記憶效應,並造成感測訊號重複性下降。藉由原位光電化學 (in situ optoelectrochemical) 分析,我們開發出結合定電流極化與定電位去極化的無記憶效應極化量測方法。定電位去極化能有效恢復 PEDOT 的氧化還原狀態,且不顯著干擾離子選擇膜。最後,無記憶效應極化量測方法提升了SCISE的靈敏度與長期偵測極限(經 31 天連續浸泡後可達 2.8 μM)。此外,我們還探討了定電流與定電位控制對 PEDOT 與離子選擇膜行為的影響。結果也顯示 PEDOT 的可逆氧化還原特性與 ISM 的再平衡能力,對整體感測動態具有關鍵作用。此研究驗證了原位電調控策略的可行性與彈性,未來可望作為提升 SCISE 感測表現之有效方法,並擴展應用至連續、即時監測系統。
總體而言,本論文整合了多離子感測、物聯網自動化與電調控技術,以強化 SCISE 感測平台之發展。我們證明了即時多離子資料可與特定應用領域的參數整合,實現多維度的感測架構。此整合資訊能展現過去技術難以觀察的系統動態,並具備在生醫診斷、環境監測與智慧製程控制等領域的應用潛力。我們認為,基於 SCISE 的物聯網監測系統在解析離子組成與其他關鍵變因的複雜關係上具有極大潛力,有利應用於多維參數整合的前瞻技術。
zh_TW
dc.description.abstractThis dissertation focuses on the development of solid-contact ion-selective electrodes (SCISEs) for real-time, in situ, multi-ion monitoring system in hydroponic nutrient solutions. During the development of the system, we found that achieving a super-Nernstian sensitivity could enhance the sensing resolution, which is essential for detecting subtle variations in nutrient concentrations. Given the increasing demand for SCISEs in continuous monitoring applications, direct in situ control of SCISE performance using the device itself emerged as a promising strategy. To realize this, we developed a memory-free polarization measurement that combines galvanostatic polarization with potentiostatic depolarization, allowing us to improve sensor reproducibility, sensitivity, and long-term stability.
Hydroponics face challenges in nutrient management due to dynamic nutrient absorption of plants and environmental fluctuations. Traditional monitoring tools (EC and pH meters) fall short in quantifying individual ion concentrations. To overcome this limitation, we developed an IoT Nutrient Sensor System (IoNSS), capable of detecting key macronutrients (K+, NO3-, NH4+, Ca2+) and transmitting real-time data to a cloud-based platform. The system was deployed in greenhouses and a plant factory. It enabled the detection of ion-specific uptake patterns and their correlation with environmental parameters, such as vapor pressure deficit (VPD). Notably, the IoNSS enabled observation of possible correlations between specific ion imbalances and physiological disorders such as excess salt accumulation and tip burn under high VPD conditions. Additionally, the result demonstrated that K+ concentration may serve as an indirect indicator of transpiration efficiency. These findings highlight the value of integrating ion-specific sensing with microclimate data to improve diagnostic accuracy and support informed decision-making in precision agriculture.
Despite the practical deployment of the IoNSS, sensor resolution and long-term stability remained limited by environmental noise and the intrinsic properties of SCISEs. To address these limitations, we explored in situ electrical conditioning via galvanostatic polarization, aiming to achieve super-Nernstian sensitivity by enhancing ion flux. However, this approach revealed a previously unreported memory effect stemming from the polarization-induced redox behavior of PEDOT, which compromised signal reproducibility. Through in situ optoelectrochemical analysis, we developed a memory-free polarization measurement by combining galvanostatic polarization with potentiostatic depolarization. The potentiostatic depolarization enables effective restoration of the PEDOT redox state without significantly perturbing the ion-selective membrane (ISM). The method improved SCISE sensitivity, and long-term detection limits—reaching 2.8 μM after 31 days of continuous immersion. Furthermore, we investigated the respective roles of galvanostatic and potentiostatic control over PEDOT and ISM behavior. The results revealed how the reversible redox properties of PEDOT and the re-equilibration capacity of the ISM contribute to the overall sensing dynamics. These findings highlight the feasibility and flexibility of in situ electric conditioning as a useful strategy for enhancing SCISE performance, with a potential for future applications in continuous, real-time monitoring systems.
Overall, this dissertation integrates multi-ion sensing, IoT-based automation, and electrical modulation to advance SCISE technology. We show that real-time multi-ion data can be coupled with domain-specific parameters to enable multidimensional sensing. Such integration reveals previously inaccessible system dynamics and offers strong potential for applications in biomedical diagnostics, environmental monitoring, and smart process control. We believe SCISE-based cyber-monitoring systems hold great promise for uncovering complex interrelationships between ionic composition and critical variables in real-world scenarios.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:21:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:21:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vii
List of Figures xii
List of Tables xxx
Chapter 1. Introduction 1
1.1 Introduction of solid-contact ion-selective electrodes 2
1.1.1 Principle of ion-selective electrode 2
1.1.2 Introduction of solid-contact ion-selective electrode 7
1.2 Applications and challenges of solid-contact ion-selective electrode 10
1.3 Objectives 15
Chapter 2. Development of IoT Nutrient Sensor System 20
2.1 Lecture review 20
2.1.1 Multiple ion sensors based on ISEs 20
2.1.2 Hardware for ISE-based sensors 22
2.2 Materials and Methods 27
2.2.1 Reagents and materials 27
2.2.2 Apparatus 29
2.2.3 Preparation of solid-contact ion-selective electrodes 29
2.2.4 Sensitivity calibration of SCISEs 33
2.2.5 Selectivity characterization of SCISEs 34
2.2.6 Construction of the IoT nutrient sensor system 36
2.2.7 Noise analysis of the MCU-based SCISE potentiometry 42
2.3 Results and Discussion 43
2.3.1 Performance of SCISE array 43
2.3.2 Automated Measurement Procedure 48
2.3.3 Accuracy improvement of MCU-based potentiometry via high-resolution ADC 51
2.3.4 Facilitated IoT-sensor construction via hierarchical independent functional units 58
2.4 Chapter Summary 61
Chapter 3. Real-Time Cyber-Monitoring in Hydroponic Farms 62
3.1 Lecture review 62
3.1.1 Introduction of hydroponic greenhouse 62
3.1.1.1 Key environmental parameters in hydroponic greenhouse management 62
3.1.1.2 Macronutrients in hydroponic solutions 64
3.1.2 Nutrient Monitoring in hydroponics 67
3.2 Materials and methods 71
3.2.1 Reagents, materials and apparatus 71
3.2.2 Commercial ISE probes (K+, NO3-, and NH4+) 71
3.2.3 Nutrient measurement validation 72
3.2.4 Hydroponic field-test applications 73
3.2.4.1 Field test in NTU plant factory 75
3.2.4.2 Field test in NPUST arch net green house 79
3.3 Results and discussion 81
3.3.1 Real-time monitoring of specific-element ratio of nutrient solution 81
3.3.2 Real-time determination of nitrate/ammonium utilization and EC-ion dependency 86
3.3.3 Ion ratio dynamics in the different nutrient solutions 91
3.4 Chapter Summary 93
Chapter 4. Correlation of Nutrient Absorption and Leaf Transpiration 94
4.1 Lecture review 94
4.1.1 Nutrient absorption and leaf transpiration 94
4.1.2 Effects of vapor pressure deficit on plants' physiological disorders 97
4.1.3 Challenges of optimizing VPD in the Taiwan 100
4.2 Materials and methods 107
4.2.1 Reagents, materials and apparatus 107
4.2.2 Field test in Commercial greenhouse 107
4.3 Results and discussion 111
4.3.1 Application of the IoNSS in a commercial hydroponic greenhouse 111
4.3.2 Plant physiological disorders under high VPD 114
4.3.3 Correlation of nutrient absorption and VPD 116
4.4 Chapter summary 121
Chapter 5. In Situ Rapid Conditioning SCISE Through Memory-Free Galvanostatic Polarization 122
5.1 Lecture review 122
5.1.1 ISE measurement under equilibrium and non-equilibrium state 122
5.1.2 Chronopotentiometry for analysis of ISE characteristics 125
5.1.3 ISE under chronopotentiometric measurement 128
5.1.4 Polarization of SCISE under chronopotentiometry 134
5.1.5 Memory effect for ISEs 141
5.2 Methods and Materials 143
5.2.1 Reagents and materials 143
5.2.2 Apparatus 144
5.2.3 Preparation of potassium and nitrate ion-selective electrode 145
5.2.4 In situ optoelectrochemical experiment 145
5.2.5 Sensing measurements 147
5.3 Results and Discussion 148
5.3.1 K+ SCISE under chronopotentiometry 148
5.3.2 In situ optoelectrochemical experiment for K+ SCISE 152
5.3.3 Galvanostatic-induced memory effect on K+ SCISE 156
5.3.4 Elimination of the memory effect 161
5.3.5 Depolarization Effects on PEDOT 165
5.3.6 Effects on ISM by applied current and voltage 171
5.3.7 Improved linear range and detection limit 177
5.4 Chapter Summary 183
Chapter 6. Calibration Using Re-Equilibrium Potential Under Memory-Free Polarization Conditions 184
6.1 Introduction 184
6.2 Results and discussion 186
6.2.1 Galvanostatic polarization of NO3- SCISEs 186
6.2.2 Re-equilibrium after galvanostatic polarization 192
6.2.3 Reversible memory-free galvanostatic polarization measurement 198
6.2.4 Improved long-term performance 204
6.3 Chapter Summary 207
Chapter 7. Conclusions and future work 208
7.1 Conclusions 208
7.2 Future prospects 211
Reference 213
Appendix: CuHCF-based SCISE under memory-free polarization 228
A.1 Optoelectrochemical characteristics of CuHCF-based SCISE 228
A.2 Galvanostatic polarization on CuHCF-based SCISE 231
A.3 Potentiostatic depolarization on CuHCF-based SCISE 233
A.4 Selectivity of CuHCF-based SCISE under memory-free polarization 236
-
dc.language.isoen-
dc.subject固態接觸式離子選擇電極zh_TW
dc.subject多離子感測zh_TW
dc.subject水耕養液zh_TW
dc.subject電流控制zh_TW
dc.subject記憶效應zh_TW
dc.subjectmemory effecten
dc.subjectsolid-contact ion-selective electrodeen
dc.subjectmulti-ion sensingen
dc.subjecthydroponic nutrient solutionen
dc.subjectgalvanostatic controlen
dc.title聚(3,4-乙烯二氧噻吩)固態接觸式離子選擇電極在水耕物聯網監測與電流記憶效應之研究zh_TW
dc.titleOn the Hydroponic Cyber-Monitoring and Galvanostatic Memory Effects of PEDOT Solid-Contact Ion-Selective Electrodesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee方煒;鄭宗記;謝博全;林致廷;吳靖宙zh_TW
dc.contributor.oralexamcommitteeWei Fang;Tzong-Jih Cheng;Po-Chuan Hsieh;Chih-Ting Lin;Ching-Chou Wuen
dc.subject.keyword固態接觸式離子選擇電極,多離子感測,水耕養液,電流控制,記憶效應,zh_TW
dc.subject.keywordsolid-contact ion-selective electrode,multi-ion sensing,hydroponic nutrient solution,galvanostatic control,memory effect,en
dc.relation.page237-
dc.identifier.doi10.6342/NTU202502675-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
51.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved