請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98934完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 許涵雅 | zh_TW |
| dc.contributor.author | Han-Ya Hsu | en |
| dc.date.accessioned | 2025-08-20T16:20:40Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 1. Feng, J., Funk, W.D., Wang, S.-S., Weinrich, S.L., Avilion, A.A., Chiu, C.-P., Adams, R.R., Chang, E., Allsopp, R.C., Yu, J., Le, S., West, M.D., Harley, C.B., Andrews,, W.H., Greider, C.W., Villeponteau, B., 1995. The RNA Component of Human Telomerase. Science 269, 1236–1241
2. Chen, J.-L., Blasco, M.A., Greider, C.W., 2000. Secondary Structure of Vertebrate Telomerase RNA. Cell 100, 503–514 3. Chen, J.L., 2002. A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic Acids Research 30, 592–597 4. Mitchell, J.R., Cheng, J., Collins, K., 1999. A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End. Molecular and Cellular Biology 19, 567–576 5. Mitchell, J.R., Wood, E., Collins, K., 1999. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 6. Terada, K., Miyake, K., Yamaguchi, H., Miyake, N., Yamanaka, K., Kojima, S., Ito, E., Inokuchi, K., Okada, T., 2020. TERT and TERC mutations detected in cryptic dyskeratosis congenita suppress telomerase activity. International Journal of Laboratory Hematology 42, 316–321 7. Yamaguchi, H., Calado, R.T., Ly, H., Kajigaya, S., Baerlocher, G.M., Chanock, S.J., Lansdorp, P.M., Young, N.S., 2005. Mutations inTERT,the Gene for Telomerase Reverse Transcriptase, in Aplastic Anemia. New England Journal of Medicine 352, 1413–1424 8. Zhang, K., Xu, L., Cong, Y.-S., 2021. Telomere Dysfunction in Idiopathic Pulmonary Fibrosis. Frontiers in Medicine 8 9. Liu, C.-X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.-K., Xue, W., Cui, Y., Dong, K., Ding, H., Qu, B., Zhou, Z., Shen, N., Yang, L., Chen, L.-L., 2019. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell 177, 865–880.e21 10. Gazzaniga, F.S., Blackburn, E.H., 2014. An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood 124, 3675–3684 11. Buratowski, S., 2009. Progression through the RNA Polymerase II CTD Cycle. Molecular Cell 36, 541–546 12. Harlen, K.M., Churchman, L.S., 2017. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nature Reviews Molecular Cell Biology 18, 263–273 13. Mccracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Program, A.E., Shuman, S., Bentley, D.L., 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes & Development 11, 3306–3318 14. Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., Mccuine, S., Burge, C.B., Sharp, P.A., Young, R.A., 2010. c-Myc Regulates Transcriptional Pause Release. Cell 141, 432–445 15. Wang J, Wu M, Chang L, et al. The lncRNA TERC promotes gastric cancer cell proliferation, migration, and invasion by sponging miR-423-5p to regulate SOX12 expression. Ann Transl Med. 2022;10(18):963 16. García-Castillo, J., Alcaraz-Pérez, F., Martínez-Balsalobre, E., García-Moreno, D., Rossmann, M.P., Fernández-Lajarín, M., Bernabé-García, M., Pérez-Oliva, A.B., Rodríguez-Cortez, V.C., Bueno, C., Adatto, I., Agarwal, S., Menéndez, P., Zon, L.I., Mulero, V., Cayuela, M.L., 2021. Telomerase RNA recruits RNA polymerase II to target gene promoters to enhance myelopoiesis. Proceedings of the National Academy of Sciences 118, e2015528118 17. Fan, C.-H., Discovery of telomerase RNA interactome in mouse embryonic stem cells, in Graduate Institute of Molecular and Cellular Biology. 2020, National Taiwan University 18. Tu, Y.-S., The function of TERC and CCAR1 interaction, in Graduate Institute of Molecular and Cellular Biology. 2022, National Taiwan University 19. Jiang, Y., Puliyappadamba, V.T., Zhang, L., Wu, W., Wali, A., Yaffe, M.B., Fontana, J.A., Rishi, A.K., 2010. A novel mechanism of cell growth regulation by Cell Cycle and Apoptosis Regulatory Protein (CARP)-1. Journal of Molecular Signaling 5, 7 20. Rishi, A.K., Zhang, L., Boyanapalli, M., Wali, A., Mohammad, R.M., Yu, Y., Fontana, J.A., Hatfield, J.S., Dawson, M.I., Majumdar, A.P.N., Reichert, U., 2003. Identification and Characterization of a Cell Cycle and Apoptosis Regulatory Protein-1 as a Novel Mediator of Apoptosis Signaling by Retinoid CD437. Journal of Biological Chemistry 278, 33422–33435 21. Mizuta, S., Minami, T., Fujita, H., Kaminaga, C., Matsui, K., Ishino, R., Fujita, A., Oda, K., Kawai, A., Hasegawa, N., Urahama, N., Roeder, R.G., Ito, M., 2014. CCAR1/CoCoA pair‐mediated recruitment of the Mediator defines a novel pathway for GATA1 function. Genes to Cells 19, 28–51 22. Ou, C.-Y., Kim, J.H., Yang, C.K., Stallcup, M.R., 2009. Requirement of Cell Cycle and Apoptosis Regulator 1 for Target Gene Activation by Wnt and β-Catenin and for Anchorage-independent Growth of Human Colon Carcinoma Cells. Journal of Biological Chemistry 284, 20629–20637 23. Yang, P.-C., Epigenetic Regulation by TERRA and TERC in Mouse Embryonic Stem Cells, in Graduate Institute of Molecular and Cellular Biology. 2021, National Taiwan University 24. Li, D., Roberts, R., 2001. Human Genome and Diseases:¶WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cellular and Molecular Life Sciences CMLS 58, 2085–2097 25. Neer, E.J., Schmidt, C.J., Nambudripad, R., Smith, T.F., 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 26. Franks, T.M., Mccloskey, A., Shokhirev, M.N., Benner, C., Rathore, A., Hetzer, M.W., 2017. Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes & Development 31, 2222–2234 27. Liu, H., Li, Y., Li, J., Liu, Y., Cui, B., 2018. H3K4me3 and Wdr82 are associated with tumor progression and a favorable prognosis in human colorectal cancer. Oncology Letters 28. Cui, G., Zhou, J., Sun, J., Kou, X., Su, Z., Xu, Y., Liu, T., Sun, L., Li, W., Wu, X., Wei, Q., Gao, S., Shi, K., 2023. WD repeat domain 82 (Wdr82) facilitates mouse iPSCs generation by interfering mitochondrial oxidative phosphorylation and glycolysis. Cellular and Molecular Life Sciences CMLS 80 29. Peter J SkeneSteven Henikoff (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites eLife 6:e21856. 30. Koshkin, A. A. et al (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630. 31. Reece-Hoyes, J.S., Walhout, A.J.M., 2018. Gateway Recombinational Cloning. Cold Spring Harbor Protocols 2018, pdb.top094912 32. Tesmer, V.M., Ford, L.P., Holt, S.E., Frank, B.C., Yi, X., Aisner, D.L., Ouellette, M., Shay, J.W., Wright, W.E., 1999. Two Inactive Fragments of the Integral RNA Cooperate To Assemble Active Telomerase with the Human Protein Catalytic Subunit (hTERT) In Vitro. Molecular and Cellular Biology 19, 6207–6216 33. Bley, C.J., Qi, X., Rand, D.P., Borges, C.R., Nelson, R.W., Chen, J.J.-L., 2011. RNA–protein binding interface in the telomerase ribonucleoprotein. Proceedings of the National Academy of Sciences 108, 20333–20338 34. Venteicher, A.S., Meng, Z., Mason, P.J., Veenstra, T.D., Artandi, S.E., 2008. Identification of ATPases Pontin and Reptin as Telomerase Components Essential for Holoenzyme Assembly. Cell 132, 945–957 35. Zheng, Q., Liu, P., Gao, G., Yuan, J., Wang, P., Huang, J., Xie, L., Lu, X., Di, F., Tong, T., Chen, J., Lu, Z., Guan, J., Wang, G., 2019. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities. Protein & Cell 10, 631–648 36. Liu, H., Yang, Y., Ge, Y., Liu, J., Zhao, Y., 2019. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Research 47, 8084–8095 37. Wang Z, Song A, Tao B, Miao M, Luo YQ, Wang J, Yin Z, Xiao R, Zhou X, Shang XY, Hu S, Liang K, Danko CG, Chen FX. The phosphatase PP1 sustains global transcription by promoting RNA polymerase II pause release. Mol Cell. 2024 38. Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M, Shilatifard A. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol. 2008 Dec;28(24):7337-44. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98934 | - |
| dc.description.abstract | 端粒酶RNA組成(TERC)作為端粒酶延長端粒的模板RNA,除作為端粒酶延長端粒的模板外,亦有研究指出其具備非典型功能,包括促進發炎反應、調控細胞凋亡及基因表現。在我們實驗室先前的研究中,透過iDRiP-MS分析並鑑定與TERC交互的蛋白,並找出了多種TERC可能參與的細胞功能,在與TERC交互的蛋白中包括CCAR1與Wdr82,這兩者皆屬於與TERC交互的前三十名。細胞分裂週期與細胞凋亡調節因子1(CCAR1)是一種核受體輔因子,可與媒介體複合體結合,對於RNA聚合酶II(RNA Pol II)在轉錄起始時的招募至轉錄起始點相當重要。WD重複結構域蛋白82(Wdr82)是SET1A複合體的成員,該複合體負責在轉錄起始位點(TSS)進行H3K4三甲基化,有助於SET1複合體招募至RNA Pol II。
為了研究TERC如何影響基因表現,我們在降低TERC表現量的小鼠胚胎幹細胞中,對CCAR1、Wdr82、RNA Pol II Ser5以及H3K4me3進行了Cut&Run定序。TERC缺失導致TSS處CCAR1和RNA Pol II Ser5的結合增加,而Wdr82與H3K4me3在TSS處的結合則減少。在定序資料中,我們挑選了在TSS處具有TERC結合位點的基因Ticrr進行報導基因實驗。並發現在TERC表現量降低後,Ticrr的啟動子活性下降,顯示TERC透過調控轉錄來控制基因表現。 最後,為了繪製TERC與其相關蛋白(WDR82、CCAR1及TERT)之間的結合區域圖譜,我在細胞中表現了帶有SFB標籤的目標蛋白。經由紫外線交聯RNA與蛋白質之後,純化帶標籤的蛋白,並對其結合的TERC RNA進行反轉錄與定序。我們將此方法命名為 UV-RIPT-seq(UV RNA免疫沉澱與定向RNA定序)。UV-RIPT-seq的分析結果顯示,CR4/CR5結構域是WDR82與CCAR1的主要結合區。此外,在假結構域(pseudoknot domain)與H/ACA結構域中也偵測到額外的結合訊號。有趣的是,在TERT的UV-RIPT-seq資料中也觀察到數個相同的結合位點,暗示WDR82與CCAR1可能與TERT競爭或干擾其與TERC的結合。這些發現突顯了TERC在端粒延長以外的重要功能,並暗示其與WDR82和CCAR1的交互作用可能參與基因表現的表觀遺傳調控。 | zh_TW |
| dc.description.abstract | The Telomerase RNA component (TERC) serves as the RNA template for telomerase to elongate telomeres. Emerging studies have shown that TERC has non-canonical functions such as promoting inflammatory responses, influencing apoptosis, and regulating gene expression. Previously, we performed iDRiP-MS to identify TERC-interacting proteins and revealed a diverse set of TERC-associated proteins, including CCAR1 and Wdr82, both of which ranked among the top thirty interactors in the TERC interactome. Cell division cycle and apoptosis regulator 1 (CCAR1), a cofactor of nuclear receptors, interacts with the mediator complex, which is crucial for the recruitment of RNA Polymerase II (RNA Pol II) during transcription initiation. WD repeat domain 82 (WDR82) is a component of the SET1A complex, which is responsible for H3K4 trimethylation at transcriptional start sites (TSS), promoting the recruitment of the SET1 complex to RNA Pol II.
Cut&Run sequencing for CCAR1, WDR82, RNA Pol II CTD phosphoserine 5 (RNA Pol II ser5), and H3K4me3 in TERC knockdown mouse embryonic stem cells revealed that TERC depletion led to increased CCAR1 and RNA Pol ll Ser5 occupancies at TSS, while WDR82 and H3K4me3 occupancies were decreased at TSS. Among TERC target genes with altered epigenetic profiles upon TERC depletion, Ticrr, which contains TERC binding sites at TSS, was selected for a reporter assay. Following TERC depletion, Ticrr promoter activity was reduced, suggesting that TERC regulates gene expression by modulating transcription. To map the interaction sites between TERC and its associated proteins (WDR82, CCAR1, and TERT), I expressed SFB-tagged versions of these proteins in cells. Following UV crosslink of RNA-protein complex, the tagged proteins were purified, and the bound TERC RNA was reverse transcribed and sequenced. We named this method UV-RIPT-seq (UV RNA immunoprecipitation for targeted RNA sequencing). The UV-RIPT-seq analysis revealed that the CR4/CR5 domain is the primary binding site for WDR82 and CCAR1. Additional interactions were also detected in the pseudoknot domain and H/ACA domain. Interestingly, several of these binding sites were also observed in the TERT UV-RIPT-seq data, suggesting that WDR82 and CCAR1 may compete with or interfere with TERT binding to TERC. These findings highlight the important roles of TERC beyond its classical function in telomere elongation, suggesting that its interaction with WDR82 and CCAR1 may contribute to the epigenetic regulation of gene expression. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:20:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:20:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract v Contents vii Content of figures x Content of tables xi Chapter 1 Introduction 1 1-1 Telomerase RNA Component (TERC) 1 1-2 RNA Polymerase II 2 1-3 Telomerase RNA Component (TERC) influences gene expression through its association with RNA polymerase II 2 1-4 Cell Cycle and Apoptosis Regulator 1 3 1-5 WD repeat domain 82 4 1-6 WDR82, CCAR1, and RNA pol II occupancy at the transcription start site are altered after TERC depletion 5 Chapter 2 Materials and Methods 6 2-1 Gateway cloning of human and mouse Wdr82, CCAR1 plasmid 6 2-4 HEK293T cells culture 8 2-5 TERC KD and plasmid transfection in mouse embryonic stem cells 9 2-6 Reporter assay 9 2-7 UV-RNA Immunoprecipitation for targeted RNA sequencing (UV-RIPT-seq) 10 2-8 Library preparation 12 2-9 HA tagged protein purify 14 2-10 In vitro transcription and 5’ biotin labeling on RNA 15 2-11 RNA-protein binding assay 15 2-12 Western blot 16 2-13 Analysis of UV-RIPT-seq 17 Chapter 3 Results 19 3-1 Construction of the Ticrr promoter plasmid 19 3-2 TERC contributes to Ticrr transcription activity 20 3-3 Construction of mouse Wdr82 used for in vitro binding assay 21 3-4 Purification of 3xHA-WT and mutant WDR82 proteins and preparation of in vitro transcribed TERC RNA 22 3-5 RNA-protein binding assay to detect the interaction of TERC and WDR82 23 3-6 Construction of SFB tagged human Wdr82 and CCAR1 23 3-7 Purification of SFB-WDR82 and SFB-CCAR1 proteins 24 3-8 CR4/CR5 domain of TERC interacts with WDR82 and CCAR1 25 Chapter 4 Discussion 27 TERC interacts with WDR82 and CCAR1 and thus influences Ticrr’s transcription activity 27 WDR82 and CCAR1 bind competitively to TERC 28 Chapter 5 Supplementary table 51 Chapter 6 Reference 60 Abbreviations 64 Figure 1 Construction of mouse and human CCAR1 with HA tag 31 Figure 2 TERC depletion influence Ticrr promoter activity in mES cells 32 Figure 3 Wdr82 plasmid designed for protein RNA in vitro binding assay 35 Figure 4 Purification of mouse WDR82 protein and synthesis of invitro transcript TERC 36 Figure 5 In-vitro binding assay to detect TERC-WDR82 interaction. 37 Figure 6 Wdr82 and CCAR1 plasmid designed for UV-RIP 40 Figure 7 Purification of 3xFlag-TERT, SFB-hCCAR1, SFB-hWDR82 proteins in UV-RIP experiment 42 Figure 8 UV-RIP to detect the binding site of TERT, WDR82, CCAR1 on TERC 48 Figure 9 Model of CCAR1, WDR82 and TERC interaction 50 Table 1. Primer used for cloning 51 Table 2. Primer used for Sanger sequencing 52 Table 3. Primer used in UV-RIPT-seq for cDNA synthesis 53 Table 4. Primer used for quantitative real-time PCR 53 Table 5. LNA gapmers sequence used in TERC knockdown 54 Table 6. Antibodies used in this project 54 Table 7. Reagents and chemicals used in this project 55 Table 8. Reagent kits used in this project 58 Table 9. Beads used in this project 59 | - |
| dc.language.iso | en | - |
| dc.subject | 細胞週期和凋亡調節因子-1 | zh_TW |
| dc.subject | 端粒酶RNA組成 | zh_TW |
| dc.subject | WD重複結構域蛋白-82 | zh_TW |
| dc.subject | RNA聚合酶II | zh_TW |
| dc.subject | RNA polymerase II | en |
| dc.subject | telomerase RNA | en |
| dc.subject | CCAR1 | en |
| dc.subject | Wdr82 | en |
| dc.title | TERC藉由WDR82與CCAR1進行表觀遺傳的調控 | zh_TW |
| dc.title | The Function of TERC in Epigenetic Regulation via WDR82 and CCAR1 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 冀宏源;蔡松智 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Yuan Chi;Kevin Tsai | en |
| dc.subject.keyword | 端粒酶RNA組成,細胞週期和凋亡調節因子-1,WD重複結構域蛋白-82,RNA聚合酶II, | zh_TW |
| dc.subject.keyword | telomerase RNA,CCAR1,Wdr82,RNA polymerase II, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202504176 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
