Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐永豐zh_TW
dc.contributor.advisorYung-Fong Hsuen
dc.contributor.author鄭澈zh_TW
dc.contributor.authorChe Chengen
dc.date.accessioned2025-08-20T16:19:41Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationAgresti, A. (1992). Analysis of ordinal paired comparison data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(2), 287–297. https://doi.org/10.2307/2347562
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for educational and psychological testing.
Arrow, K. J. (1963). Social choice and individual values (2nd ed.). Yale University Press.
Ayala, R. J. D., & Little, T. D. (2022). The theory and practice of item response theory (2nd ed.). The Guilford Press.
Bailey, R. C., Helm, B., & Gladstone, R. (1975). The effects of success and failure in a real-life setting: Performance, attribution, affect, and expectancy. The Journal of Psychology: Interdisciplinary and Applied, 89(1), 137–147. https://doi.org/10.1080/00223980.1975.9923915
Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86(4), 948–955.
Beedie, C., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition and Emotion, 19(6), 847–878. https://doi.org/10.1080/02699930541000057
Bempechat, J., London, P., & Dweck, C. S. (1991). Children’s conceptions of ability in major domains: An interview and experimental study. Child Study Journal, 21(1), 11–36.
Berk, L. E. (2018). Development through the lifespan (7th ed.). Pearson.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of itema parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459. https://doi.org/10.1007/BF02293801
Böckenholt, U. (2001). Hierarchical modeling of paired comparison data. Psychological Methods, 6(1), 49–66. https://doi.org/10.1037/1082-989X.6.1.49
Böckenholt, U. (2004). Comparative judgments as an alternative to ratings: Identifying the scale origin. Psychological Methods, 9(4), 453–465. https://doi.org/10.1037/1082-989X.9.4.453
Böckenholt, U. (2017). Measuring response styles in Likert items. Psychological Methods, 22(1), 69–83. https://doi.org/10.1037/met0000106
Böckenholt, U., & Meiser, T. (2017). Response style analysis with threshold and multi-process IRT models: A review and tutorial. British Journal of Mathematical & Statistical Psychology, 70(1), 159–181. https://doi.org/10.1111/bmsp.12086
Böckenholt, U., & Tsai, R.-C. (2001). Individual differences in paired comparison data. British Journal of Mathematical & Statistical Psychology, 54(2), 265–277. https://doi.org/10.1348/000711001159555
Brown, A. (2016). Item response models for forced-choice questionnaires: A common framework. Psychometrika, 81(1), 135–160. https://doi.org/10.1007/s11336-014-9434-9
Brown, A., & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires. Educational and Psychological Measurement, 71(3), 460–502. https://doi.org/10.1177/0013164410375112
Brown, A., & Maydeu-Olivares, A. (2012). Fitting a Thurstonian IRT model to forced-choice data using Mplus. Behavior Research Methods, 44(4), 1135–1147. https://doi.org/10.3758/s13428-012-0217-x
Brown, A., & Maydeu-Olivares, A. (2013). How IRT can solve problems of ipsative data in forced-choice questionnaires. Psychological Methods, 18(1), 36–52. https://doi.org/10.1037/a0030641
Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P. C. (2021). Bayesian item response modeling in R with brms and Stan. Journal of Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05
Bürkner, P.-C. (2022). On the information obtainable from comparative judgments. Psychometrika. https://doi.org/10.1007/s11336-022-09843-z
Burnette, J. L., O’Boyle, E. H., VanEpps, E. M., Pollack, J. M., & Finkel, E. J. (2013). Mind-sets matter: A meta-analytic review of implicit theories and self-regulation. Psychological Bulletin, 139(3), 655–701. https://doi.org/10.1037/a0029531
Cai, L. (2010). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35(3), 307–335. https://doi.org/10.3102/1076998609353115
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01
Casella, G., & Berger, R. L. (2002). Statistical inference (2nd ed.). Thomson Learning.
Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39(2), 83–87. https://doi.org/10.2307/2682801
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06
Cheng, C., & Hsu, Y.-F. (2024). Integrating power analysis and accuracy in parameter estimation: A unified approach to sample size planning in quantitative research [Poster presentation]. The 52nd Annual Meeting of the Behaviormetric Society, Osaka, Japan. https://conference.wdc-jp.com/bms/2024/index.html/
Cheng, C., Lay, K.-L., Hsu, Y.-F., & Tsai, Y.-M. (2021). Can Likert scales predict choices? Testing the congruence between using Likert scale and comparative judgment on measuring attribution. Methods in Psychology, 5, 100081. https://doi.org/10.1016/j.metip.2021.100081
Cheng, C., Yang, H.-H., & Hsu, Y.-F. (2025). Identifiability of polychoric models with latent elliptical distributions. Psychometrika, 90(2), 757–778. https://doi.org/10.1017/psy.2024.25
Cheung, M. W. L., & Chan, W. (2002). Reducing uniform response bias with ipsative measurement in multiple-group confirmatory factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 9(1), 55–77. https://doi.org/10.1207/S15328007SEM0901_4
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
Dueber, D. M., Love, A. M. A., Toland, M. D., & Turner, T. A. (2018). Comparison of single-response format and forced-choice format instruments using thurstonian item response theory. Educational and Psychological Measurement, 79(1), 108–128. https://doi.org/10.1177/0013164417752782
Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Psychology Press.
Dweck, C. S., & Leggett, E. L. (2000). A social-cognitive approach to motivation and personality. In E. T. Higgins & A. W. Kruglanski (Eds.), Motivational science: Social and personality perspectives (pp. 394–415). Psychology Press.
Dweck, C. S. (1975). Role of expectations and attributions in alleviation of learned helplessness. Journal of Personality and Social Psychology, 31(4), 674–685. https://doi.org/10.1037/h0077149
Dweck, C. S., & Leggett, E. L. (1988). A social cognitive approach to motivation and personality. Psychological Review, 95(2), 256–273. https://doi.org/10.1037/0033-295X.95.2.256
Dweck, C. S., & Reppucci, N. D. (1973). Learned helplessness and reinforcement responsibility in children. Journal of Personality and Social Psychology, 25(1), 109–116. https://doi.org/10.1037/h0034248
Elig, T. W., & Frieze, I. H. (1979). Measuring causal attributions for success and failure. Journal of Personality and Social Psychology, 37(4), 621–634. https://doi.org/10.1037/0022-3514.37.4.621
Falmagne, J. C. (2002). Elements of psychophysical theory. Oxford University Press.
Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha. Applied Psychological Measurement, 11(1), 93–103. https://doi.org/10.1177/014662168701100107
Fisher, R. A. (1934). Statistical methods for research workers (5th ed.). Oliver; Boyd.
Frick, S., Brown, A., & Wetzel, E. (2023). Investigating the normativity of trait estimates from multidimensional forced-choice data. Multivariate Behavioral Research, 58(1), 1–29. https://doi.org/10.1080/00273171.2021.1938960
Frieze, I., & Weiner, B. (1971). Cue utilization and attributional judgments for success and failure. Journal of Personality, 39(4), 591–605. https://doi.org/10.1111/j.1467-6494.1971.tb00065.x
Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities. Springer.
Goffman, E. (1956). The presentation of self in everyday life. University of Edinburgh, Social Sciences Research Centre.
Grant, H., & Dweck, C. S. (2003). Clarifying achievement goals and their impact. Journal of Personality and Social Psychology, 85(3), 541–553. https://doi.org/10.1037/0022-3514.85.3.541
Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E. J., & Steingroever, H. (2017). A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80–97. https://doi.org/10.1016/j.jmp.2017.09.005
Harter, S. (1982). The perceived competence scale for children. Child Development, 53(1), 87–97. https://doi.org/10.2307/1129640
Hedeker, D., & Gibbons, R. D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49(2), 157–176. https://doi.org/10.1016/0169-2607(96)01720-8
Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47), 1593–1623.
Hong, Y. Y., Chiu, C. Y., Dweck, C. S., Lin, D. M. S., & Wan, W. (1999). Implicit theories, attributions, and coping: A meaning system approach. Journal of Personality and Social Psychology, 77(3), 588–599. https://doi.org/10.1037/0022-3514.77.3.588
Kelley, K., Anderson, S. F., & Maxwell, S. E. (2023). Sample-size planning. In H. Cooper, M. N. Coutanche, L. M. McMullen, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology: Foundations, planning, measures, and psychometrics (2nd ed., pp. 189–209, Vol. 1). American Psychological Association.
Klein, D. C., Fencil-Morse, E., & Seligman, M. E. (1976). Learned helplessness, depression, and the attribution of failure. Journal of Personality and Social Psychology, 33(5), 508–516. https://doi.org/10.1037/0022-3514.33.5.508
Kreitchmann, R. S., Abad, F. J., Ponsoda, V., Nieto, M. D., & Morillo, D. (2019). Controlling for response biases in self-report scales: Forced-choice vs. psychometric modeling of likert items. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2019.02309
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic differentiation and Laplace approximation. Journal of Statistical Software, 70(5), 1–21. https://doi.org/10.18637/jss.v070.i05
Lay, K. L., Waters, E., & Park, K. A. (1989). Maternal responsiveness and child compliance: The role of mood as a mediator. Child Development, 60(6), 1405–1411. https://doi.org/10.2307/1130930
Lay, K.-L., & Lee, P.-C. (2007, March 29–April 1). The goal structure of chinese students and its impact on achievement motivation [Conference presentation]. Biennial Meeting of the Society for Research in Child Development, Boston, MA, United States.
Lay, K.-L., & Tsai, Y.-M. (2005, April 7–10). Moral, pragmatic, and entity concepts of academic effort among Chinese adolescents: A developmental perspective [Conference presentation]. Biennial Meeting of the Society for Research in Child Development, Atlanta, GA, United States.
Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Addison-Wesley.
Luce, R. D. (1959). Individual choice behavior. John Wiley.
Marsh, H. W., Cairns, L., Relich, J., Barnes, J., & Debus, R. L. (1984). The relationship between dimensions of self-attribution and dimensions of self-concept. Journal of Educational Psychology, 76(1), 3–32. https://doi.org/10.1037/0022-0663.76.1.3
Maruyama, G. M. (1982). How should attributions be measured? a reanalysis of data from Elig and Frieze. American Educational Research Journal, 19(4), 552–558. https://doi.org/10.2307/1162543
McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence Erlbaum Associates Publishers.
Muramoto, Y. (2003). Self-effacement in reaction to praise: A comparison of americans and japanese. Journal of Cross-Cultural Psychology, 34(6), 627–643. https://doi.org/10.1177/0022022103256479
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132. https://doi.org/10.1007/BF02294210
Nokelainen, P., Tirri, K., & Merenti-Välimäki, H. L. (2007). Investigating the influence of attribution styles on the development of mathematical talent. Gifted Child Quarterly, 51(1), 64–81. https://doi.org/10.1177/0016986206296659
R Core Team. (2021). R: A language and environment for statistical computing (Version 4.5.1). R Foundation for Statistical Computing. https://www.R-project.org/
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement,Applied Psychological Measurement, 1(3), 385–401. https://doi.org/10.1177/014662167700100306
Regenwetter, M., Kim, A., Kantor, A., & Ho, M. H. R. (2007). The unexpected empirical consensus among consensus methods. Psychological Science, 18(7), 629–635. https://doi.org/10.1111/j.1467-9280.2007.01950.x
Revelle, W. (2025). psych: Procedures for psychological, psychometric, and personality research (Version 2.4.3). CRAN. https://cran.r-project.org/package=psych
Samejima, F. (1997). Graded response model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). Springer New York.
Spelke, E. (1994). Initial knowledge: Six suggestions. Cognition, 50(1), 431–445. https://doi.org/10.1016/0010-0277(94)90039-6
Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychological Bulletin, 133(1), 65–94. https://doi.org/10.1037/0033-2909.133.1.65
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680. https://doi.org/10.1126/science.103.2684.677
Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52(3), 393–408. https://doi.org/10.1007/BF02294363
Thurstone, L. L. (1927a). A law of comparative judgment. Psychological Review, 34(4), 273–286. https://doi.org/10.1037/h0070288
Thurstone, L. L. (1927b). Psychophysical analysis. American Journal of Psychology, 38(3), 368–389. https://doi.org/10.2307/1415006
Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86. https://doi.org/10.1080/01621459.1986.10478240
Tsai, R. C., & Böckenholt, U. (2008). On the importance of distinguishing between within- and between-subject effects in intransitive intertemporal choice. Journal of Mathematical Psychology, 52(1), 10–20. https://doi.org/10.1016/j.jmp.2007.09.004
Tsai, Y.-M., & Lay, K.-L. (2005, April 7–10). Do Chinese adolescents fit into an ability-driven Western framework of achievement motivation? A developmental perspective [Conference presentation]. Biennial Meeting of the Society for Research in Child Development, Atlanta, GA, United States.
Urdan, T., & Midgley, C. (2001). Academic self-handicapping: What we know, what more there is to learn. Educational Psychology Review, 13(2), 115–138. https://doi.org/10.1023/A:1009061303214
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03
van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press.
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Wang, Q., & Ng, F. F. Y. (2012). Chinese students’ implicit theories of intelligence and school performance: Implications for their approach to schoolwork. Personality and Individual Differences, 52(8), 930–935. https://doi.org/10.1016/j.paid.2012.01.024
Weiner, B. (1986). An attributional theory of motivation and emotion. Springer-Verlag.
Weiner, B. (2018). The legacy of an attribution approach to motivation and emotion: A no-crisis zone. Motivation Science, 4(1), 4–14. https://doi.org/10.1037/mot0000082
Weiner, B., Frieze, I., Kukla, A., Reed, L., Rest, S., & Rosenbaum, R. (1971). Perceiving the causes of success and failure. General Learning Press.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Xiao, Y., Liu, H., & Li, H. (2017). Integration of the forced-choice questionnaire and the Likert scale: A simulation study. Frontiers in Psychology, 8, 806. https://doi.org/10.3389/fpsyg.2017.00806
Zhang, J., & Lin, C.-K. C. (2016). Generalizability theory with one-facet nonadditive models. Applied Psychological Measurement, 40(6), 367–386. https://doi.org/10.1177/0146621616651603
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98930-
dc.description.abstract在社會科學領域中,準確測量個體在不同選項間的偏好至關重要,李克特量表(Likert Scale,LS)與比較判斷(Comparative Judgment,CJ)是兩種常用的測量方法。李克特量表因為廣為人知且易於使用而被廣泛採用;比較判斷則提供了更直接的偏好測量。然而,比較判斷因其強迫選擇的特性,其估計分數的可解釋性受到限制。Böckenholt (2004) 及後續研究者提出了結合李克特量表與比較判斷資料的模型,以發揮兩種測量方法的優勢。儘管有這些重要進展,先前研究中使用的這類聯合Thurstonian模型(Joint Thurstonian models)仍無法適當地處理序數尺度資料、無法考慮題目參數和閾值的異質性,亦無法偵測李克特量表與比較判斷資料間的潛在差異。為了解決這些限制,我們開發了一系列聯合 Thurstonian 模型,包括聯合 Thurstonian 試題反應理論模型(JT-IRT)、聯合 Thurstonian 非加成性概推度理論模型(JT-NAGT)和聯合 Thurstonian 可加成性概推度理論模型(JT-AGT),並檢驗這些新模型在學業歸因測量上的適用性和效度。為達成此目標,我們招募大學生針對真實的重要學業成功或失敗經驗(期中考考好或考壞)提供多重學業歸因(成功組 n_成功 = 396 人;失敗組 n_失敗 = 330 人)。除了常見的努力和能力歸因外,本研究還納入了其他歸因類型,包括考試難度、運氣和情緒。我們使用不同的心理計量模型:從LS資料、CJ資料,或結合兩者的資料中產生不同指標,隨後使用前進選擇法進行「與理論相關構念的聚合與區辨效度分析」(包含智力內隱理論與成就目標取向),以及「與學習適應的效標關聯效度分析」(包含憂鬱情緒、拖延閒混及自我設限),以檢視不同指標之效度。結果顯示:在成功和失敗歸因情境中,基於概推度理論之聯合 Thurstonian 模型(JT-AGT 和 JT-NAGT)顯著優於傳統的 Böckenholt 模型,JT-NAGT在成功情境中表現最佳,而JT-AGT在失敗情境中展現優勢,但這兩者的模型適配度依然不若LS與CJ分離建模之結果。效度分析顯示:能力和努力歸因主要透過LS與效標相關,而運氣歸因則多透過CJ與效標相關;情緒和運氣歸因展現出比傳統強調的能力歸因更強的解釋力。並且,聯合 Thurstonian 指標展現出超越個別LS或CJ的顯著增益效度,顯示整合測量方法能捕捉到單一測量工具無法表徵的獨特變異。這些發現挑戰了當今聚焦於努力與能力歸因之歸因理論,並指出心情和運氣等歸因在歸因研究中具有無法被忽略的解釋力,這代表研究者需採用多種測量方法與多重歸因來掌握學業歸因與適應之間的複雜關係。zh_TW
dc.description.abstractIn the field of social science, accurately measuring individuals' preferences among alternatives is essential, with two prominent measurement formats—Likert Scale (LS) and Comparative Judgment (CJ)—often employed for this purpose. While LS is widely used because it is well-known and easy to apply, CJ offers a more direct measurement of preferences. However, CJ poses challenges due to its ipsative nature, which can hinder the interpretability and comparability of its estimated scores. Böckenholt (2004) and subsequent researchers proposed models to combine data acquired via LS and CJ, leveraging the strengths of both measurement methods. Despite these significant advances, the joint Thurstonian models used in prior research were unable to adequately model data obtained from ordinal scales, account for heterogeneity in item parameters and thresholds, or detect latent differences between LS and CJ data. To address these limitations, we developed a family of Joint Thurstonian models, including the Joint Thurstonian Item Response Theory (JT-IRT), Joint Thurstonian Nonadditive Generalizability Theory (JT-NAGT) models, and Joint Thurstonian Additive Generalizability Theory (JT-AGT) models, and examined these new models in terms of their applicability and validity in academic attribution. To achieve this objective, college students reported on their multiple causal ascriptions after a real-life experience of a major academic success or failure (i.e., grades received from a midterm: n_success = 396$; n_failure = 330). In addition to the commonly assessed academic attributions of effort and ability, this study also included other attributions, namely, task difficulty, luck, and mood. We then used different mathematical models to generate indicators from LS data alone, CJ data alone, or combined LS and CJ data. Subsequently, we used forward selection methodology to assess validity evidence through convergent and discriminant validity analyses with theoretically related constructs and test-criterion relationships with academic adjustment outcomes.

Across both success and failure attribution scenarios, Joint Thurstonian models with generalized tau structures (JT-AGT and JT-NAGT) substantially outperformed the traditional Böckenholt model, though separate modeling approaches achieved the best overall model fit. The results reveal complex patterns of criterion-related validity. JT-NAGT performed best in success scenarios, while JT-AGT showed advantages in failure contexts. Validity analyses revealed systematic measurement format preferences: ability and effort attributions emerged primarily through LS indicators, while luck attributions predominated through CJ measures. Notably, mood and luck attributions showed stronger explanatory power than traditionally emphasized ability attributions. Joint Thurstonian indicators demonstrated significant incremental validity beyond individual LS or CJ measures, indicating that integrated measurement approaches capture unique attribution variance not fully represented by single-format instruments. These findings challenge current attribution theories that only focus on effort and ability attributions. Moreover, these findings suggest that mood and external attributions (especially luck) cannot be overlooked in attribution research, and researchers need to adopt multiple measurements to grasp the complex relations among academic attributions and adjustment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:19:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:19:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsPage
論文口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
Table of Contents vii
List of Tables xi
Denotation xiii
Chapter 1 Paradigmatic Decisions for Measuring Choices and Preferences: Likert Scales, Comparative Judgments, or Combined Models? Using Academic Attribution as an Example 1
Chapter 2 The Family of Joint Thurstonian Models 9
2.1 Within-Judge Representations: Error Structure . . . . . . . . . . . . 15
2.2 Assumptions on the Error Structure . . . . . . . . . . . . . . . . . . 18
2.3 Between-Judge Representations: Assumptions on the Latent True Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Statistical and Computational Issues . . . . . . . . . . . . . . . . . . 31
Chapter 3 Empirical Application: Measurement Issues while Assessing Academic Attribution 41
3.1 Theoretically Related Constructs and Academic Adjustment Indicators 43
3.2 The Indicators of Academic Attribution . . . . . . . . . . . . . . . . 47
3.3 Methodological Framework for Validity Assessment . . . . . . . . . 51
Chapter 4 Method 57
4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Chapter 5 Results 69
5.1 Statistical Software and Estimation Procedures . . . . . . . . . . . . 69
5.2 Preliminary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Attribution Measurement Development . . . . . . . . . . . . . . . . 74
5.4 Validity Evidence Based on Relations to Other Variables . . . . . . . 77
Chapter 6 General Discussion 89
6.1 Test Construction and Psychometric Practice . . . . . . . . . . . . . 92
6.2 Implications on Attribution Theory and Educational Practice . . . . . 93
6.3 The Validity Issues for Measuring Choices and Preferences . . . . . . 103
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 111
Chapter 7 References . . . . . . . . . . . . . . . . . . . . . . . 121
Appendix A — Derivation of Sample Size Formula . . . . . 130
Appendix B — Likelihood Decomposition for Separate Models 135
作者簡歷 137
-
dc.language.isoen-
dc.subject學業歸因zh_TW
dc.subject比較判斷zh_TW
dc.subject聯合 Thurstonian 模型zh_TW
dc.subject李克特量表zh_TW
dc.subject測量效度zh_TW
dc.subjectBöckenholt模型zh_TW
dc.subjectJoint Thurstonian modelsen
dc.subjectacademic attributionen
dc.subjectBöckenholt modelen
dc.subjectmeasurement validityen
dc.subjectLikert scalesen
dc.subjectcomparative judgmenten
dc.title測量選擇和偏好的派典決斷: 李克特量表、比較判斷、或綜合模型?以學業歸因為例zh_TW
dc.titleParadigmatic Decisions for Measuring Choices and Preferences: Likert Scales, Comparative Judgments, or Combined Models? Using Academic Attribution as an Exampleen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor雷庚玲zh_TW
dc.contributor.coadvisorKeng-Ling Layen
dc.contributor.oralexamcommittee陳柏邑;黃柏僩;游琇婷;陳俊宏;張育瑋zh_TW
dc.contributor.oralexamcommitteePo-Yi Chen;Po-Hsien Huang;Hsiu-Ting Yu;Jyun-Hong Chen;Yu-Wei Changen
dc.subject.keyword學業歸因,比較判斷,聯合 Thurstonian 模型,李克特量表,測量效度,Böckenholt模型,zh_TW
dc.subject.keywordacademic attribution,comparative judgment,Joint Thurstonian models,Likert scales,measurement validity,Böckenholt model,en
dc.relation.page137-
dc.identifier.doi10.6342/NTU202504267-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
dc.date.embargo-lift2030-08-07-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-07
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved