請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98927| 標題: | AI人工智慧賦能的AR智慧眼鏡導入產業應用之商業計畫– 以台灣新創公司為例 Business Plan for the Industrial Deployment of AI-Enabled AR Smart Glasses: The Case of a Taiwanese Startup Company |
| 作者: | 蘇彥彰 Yen-Chang Su |
| 指導教授: | 郭瑞祥 Ruey-Shan Guo |
| 共同指導教授: | 陸洛 Luo Lu |
| 關鍵字: | AR擴增實境智慧眼鏡,光場顯示,MicroLED微顯示器,在地部署人工智慧,大型多模態模型(LMM),AI代理人,AI成長飛輪商業模式, AR Augmented Reality Smart Glasses,Light Field Display,MicroLED Microdisplay,On-Premise Artificial Intelligence,Large Multimodal Model (LMM),AI Agents,AI Growth Flywheel Business Model, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 本計畫提出一套專為台灣新創公司量身打造的完整商業計畫,目標在於開發並導入AI賦能的AR智慧眼鏡,應用於高價值的工業場域。計畫核心論點為:正值大型多模態模型(LMM)、MicroLED微顯示技術與光場光學三項關鍵技術交匯之際,技術成熟度與市場需求同步到位,形成突破AR應用長期瓶頸的最佳時機,為工業場域提供可行的解決方案。
本計畫採取「集中化差異策略」,迴避價格競爭激烈的消費性市場,聚焦於對資訊安全、操作精準性與長時佩戴舒適性具有高度要求的工業利基市場,如半導體製造與能源設施等。此策略的實施仰賴以下四項核心能力: 1. 硬體技術整合:整合光場顯示技術與MicroLED微顯示器,解決AR常見的視覺輻輳調節衝突(VAC)問題,並提升配戴舒適度,滿足工業現場長時間使用之需求。 2. 軟體在地部署架構:設計「端-伺服器雙AI代理人」在地部署模式,使資料處理與模型推論均可於企業內部環境中進行,強化資料主權與資訊安全,降低資安風險,符合高科技產業之需求。 3. AI應用功能:本計畫將AR裝置由被動的資訊顯示器升級為具備邊緣推論與即時互動能力的智慧代理系統。透過導入大型多模態模型(LLM/LMM)、AI代理人(AI Agents),以及檢索增強生成(Retrieval-Augmented Generation, RAG)架構,裝置可在地執行知識擷取、指令理解與語意生成,提供即時輔助與決策支援,全面提升人機協作效率與智能化水準。 4. 商業模式設計:採用「AI成長飛輪」商業模式,以低成本硬體降低導入門檻,搭配免費增值(Freemium)策略吸引早期用戶。後續營收來自軟體即服務(SaaS)與模型即服務(MaaS)訂閱。使用者在操作過程中產生的工業數據將回饋至模型訓練,優化AI效能,透過數據與模型之正向循環,強化產品價值、提升使用者黏著度,逐步建立資料與技術門檻,形成可持續的競爭優勢。 整體而言,本計畫不僅聚焦單一硬體產品的開發,更致力於打造結合人工智慧與AR裝置的工業智慧平台。藉由精準的市場定位,結合台灣於半導體與光電產業的既有優勢,再搭配數據驅動的商業邏輯,預期本計畫所描繪的新創公司,具備於全球工業AR市場中建立長期競爭優勢之潛力。 This project presents a comprehensive business plan tailored for a Taiwanese startup, aiming to develop and implement AI-powered augmented reality (AR) smart glasses for high-value industrial applications. The core proposition is that the convergence of three critical technologies—large multimodal models (LMMs), MicroLED microdisplay technology, and light field optics—has created a unique inflection point where technological maturity meets market demand, enabling practical solutions to longstanding bottlenecks in AR adoption for industrial use. The strategy adopted in this plan is a focused differentiation strategy, deliberately avoiding the highly competitive consumer market and instead targeting industrial niche sectors with high demands for data security, operational precision, and long-duration wearability, such as semiconductor manufacturing and energy infrastructure. Successful implementation of this strategy relies on four key capabilities: 1. Hardware Integration: By combining light field display technology with MicroLED microdisplays, the system addresses the common issue of vergence-accommodation conflict (VAC) in AR and enhances wearing comfort, making it suitable for prolonged use in industrial environments. 2. Localized Software Deployment Architecture: A dual-agent architecture involving device-side and server-side AI agents is proposed, enabling all data processing and model inference to be executed within the enterprise's internal environment. This design ensures data sovereignty and reduces cybersecurity risks, aligning with the security requirements of the high-tech industry. 3. AI Application Capabilities: The AR device is transformed from a passive information display into an intelligent agent equipped with edge inference and customization capabilities. Leveraging large multimodal models (LLM/LMM), AI agents, and retrieval-augmented generation (RAG), the system supports on-device knowledge retrieval, command interpretation, and real-time semantic generation. This architecture enhances field task support, decision-making assistance, and human-machine collaboration efficiency. 4. Business Model Design: An "AI growth flywheel" model is employed to lower the entry barrier through low-cost hardware and to attract early users via a freemium strategy. Subsequent revenues are generated through Software-as-a-Service (SaaS) and Model-as-a-Service (MaaS) subscriptions. Industrial data generated during usage feeds back into model training, continuously optimizing AI performance. This positive feedback loop between data and models enhances product value, strengthens user retention, and gradually builds data and technology barriers, establishing a sustainable competitive advantage. In summary, this project goes beyond the development of a single hardware product, aiming instead to build an industrial intelligence platform that integrates AI and AR technologies. By leveraging Taiwan's existing strengths in the semiconductor and optoelectronics industries, combined with a data-driven business logic and precise market positioning, the startup described in this plan has the potential to establish long-term competitiveness in the global industrial AR market. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98927 |
| DOI: | 10.6342/NTU202504107 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2025-08-21 |
| 顯示於系所單位: | 創業創新管理碩士在職專班(EiMBA) |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
