請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君浩 | zh_TW |
| dc.contributor.advisor | Jiun-Haw Lee | en |
| dc.contributor.author | 陳劭安 | zh_TW |
| dc.contributor.author | Shao-An Chen | en |
| dc.date.accessioned | 2025-08-20T16:16:43Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] POPE, Martin, et al. Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963, 38.8: 2042-2043.
[2] TANG, Ching W, et al. Organic electroluminescent diodes. Applied physics letters, 1987, 51.12: 913-915. [3] BURROUGHES, Jeremy H., et al. Light-emitting diodes based on conjugated polymers. nature, 1990, 347.6293: 539-541. [4] KATRIEL, Jacob, et al. Theoretical interpretation of Hund's rule. In: Advances in quantum chemistry. Academic Press, 1977. p. 143-185. [5] LEDOS, Nicolas, et al. Reaching the 5% theoretical limit of fluorescent OLEDs with push–pull benzophospholes. Journal of Materials Chemistry C, 2023, 11.11: 3826-3831. [6] O’BRIEN, D. F., et al. Improved energy transfer in electrophosphorescent devices. Applied Physics Letters, 1999, 74.3: 442-444. [7] LEE, Jiun-Haw, et al. Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C, 2019, 7.20: 5874-5888. [8] CHEN, Xian-Kai, et al. Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight. Accounts of Chemical Research, 2018, 51.9: 2215-2224. [9] UOYAMA, Hiroki, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492.7428: 234-238. [10] GOUSHI, Kenichi, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 2012, 6.4: 253-258. [11] CORRÊA SANTOS, Daniela, et al. Blue light polymeric emitters for the development of OLED devices. Journal of Materials Science: Materials in Electronics, 2022, 33.16: 12529-12565. [12] LIN, Ting-An, et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Advanced materials (Deerfield Beach, Fla.), 2016, 28.32: 6976-6983. [13] KHAN, Aziz, et al. Two new thermally activated delayed fluorescent molecules incorporating spiro-acridine donors for sky-blue organic light emitting diode devices demonstrating an impressive 31% EQE. Dyes and Pigments, 2025, 232: 112478. [14] ZHANG, Zhen, et al. Synthesis, photophysical and optoelectronic properties of quinazoline-centered dyes and their applications in organic light-emitting diodes. Dyes and Pigments, 2016, 125: 299-308. [15] LI, Bowen, et al. Quinazoline‐based thermally activated delayed fluorecence for high‐performance OLEDs with external quantum efficiencies exceeding 20%. Advanced Optical Materials, 2019, 7.9: 1801496. [16] LI, Pan, et al. Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. Journal of Materials Chemistry C, 2021, 9.37: 12633-12641. [17] KONDAKOV, D. Y. Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives. Journal of Applied Physics, 2007, 102.11. [18] LIN, Bo-Yen, et al. Exciplex-sensitized triplet–triplet annihilation in heterojunction organic thin-film. ACS Applied Materials & Interfaces, 2017, 9.12: 10963-10970. [19] DI, Dawei, et al. Efficient triplet exciton fusion in molecularly doped polymer light‐emitting diodes. Advanced Materials, 2017, 29.13: 1605987. [20] WU, K.‐C., et al. The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices. Advanced Functional Materials, 2008, 18.1: 67-75. [21] CHOU, P.-Y., et al. Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chemical communications, 2014, 50.52: 6869-6871. [22] JIANG, He, et al. Orthogonal anthracene and pyrene derivatives for efficient pure deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2023, 11.19: 6438-6443. [23] LEE, Jian Haur, et al. Deep blue fluorescent material with an extremely high ratio of horizontal orientation to enhance light outcoupling efficiency (44%) and external quantum efficiency in doped and non-doped organic light-emitting diodes. ACS Applied Materials & Interfaces, 2021, 13.29: 34605-34615. [24] LEE, Jian Haur, et al. Classic fluorophores with a horizontal alignment for enhancing light outcoupling efficiency (≈ 30%) and external quantum efficiency (≈ 7%) of near ultraviolet (λmax< 400 nm) organic light‐emitting diodes. Advanced Optical Materials, 2023, 11.8: 2202666. [25] PENG, Qiming, et al. Evidence of the Reverse Intersystem Crossing in Intra‐Molecular Charge‐Transfer Fluorescence‐Based Organic Light‐Emitting Devices Through Magneto‐Electroluminescence Measurements. Advanced Optical Materials, 2013, 1.5: 362-366. [26] LIN, Yulin, et al. Visualizing the “Hidden” Triplet–Triplet Fusion Process to Fluorescence in Typical Organic/Polymer Light‐Emitting Diodes. Advanced Optical Materials, 2025, 13.2: 2402122. [27] LI, Yi-Zhen, et al. High efficiency in blue TADF OLED using favorable horizontal oriented host. Chemical Engineering Journal, 2024, 498: 155553. [28] ZAINI, M. S, et al. The effect of trap density on the trapping and de-trapping processes in determining the turn-on voltage of double-carrier organic light-emitting devices (OLEDs). Journal of Electronic Materials, 2021, 50.8: 4511-4523. [29] KANG, Jooyoun, et al. Time‐Resolved Electroluminescence Study for the Effect of Charge Traps on the Luminescence Properties of Organic Light‐Emitting Diodes. physica status solidi (a), 2020, 217.17: 2000081. [30] VAN DER ZEE, Bas, et al. Triplet-polaron-annihilation-induced degradation of organic light-emitting diodes based on thermally activated delayed fluorescence. Physical Review Applied, 2022, 18.6: 064002. [31] HE, Zikai, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nature communications, 2017, 8.1: 416. [32] ZHANG, Qiaoyu, et al. Crystalline hydrogen-bonded organic framework for air-tolerant triplet–triplet annihilation upconversion. Chemical Communications, 2024, 60.33: 4475-4478. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98917 | - |
| dc.description.abstract | 本篇論文中包含兩個主題,首先,我們成功展示了兩種基於不同激子收集機制的高效能有機發光二極體(OLED),分別是熱活化延遲螢光(TADF)和三重態-三重態融合(TTF)。第一個主題是針對綠光TADF OLED應用,我們開發了兩種新的基於嘧啶的TADF發光材料,分別是 10,10'-((5-fluoroquinazoline-2,4-diyl)bis(4,1-phenylene))bis(9,9-dimethyl-9,10- dihydroacridan) (4Ac5FQN) 和 10,10''-((5-fluoroquinazoline-2,4-diyl)bis(4,1-phenylene))bis(10H-spiro[acridan9,9'-fluorene]) (4SpAc5FQN),它們分別展現出 20.2% 和 22.1% 的卓越外部量子效率(EQE)。這兩者的單重態-三重態能隙(ΔEST)分別為 0.02 eV 和 0.07 eV,促進了高效的反向系統間交叉(RISC),進一步證明了它們強大的TADF潛力。
此外,在第二個研究主題中,我們還探索了基於藍光 TTF 的 OLED,使用了兩種新合成的芘基衍生物 1-(3′,4′,5′-triphenyl-[1,1′:2′,1″-terphenyl]-4-yl)pyrene (1PyrB4ph) 和 1,1'-(4′,5′,6′-triphenyl-[1,1′:2′,1″-terphenyl]-3′,4″-diyl)dipyrene (1PyrB4phPyr)。通過引入四苯基苯(4Ph)單元,有效增加了分子間距離,從而提升了分子排列並改善了角度穩定性,這一點在角度依賴光致發光(ADPL)測量中得到了驗證。這些材料的最大外部量子效率分別為 11.39% 和 10.07%。瞬態電激發光(TrEL)測量顯示出顯著的延遲發光比例,分別為 18% 和 9%,這些現象歸因於 TTF 機制,並通過磁場電激發光(MEL)分析進一步確認。據我們所知,這些是目前報告中在芘基 OLED 中最高的 TTF 貢獻。本研究突顯了剛性 TADF 發光材料和 TTF 支持的主體材料在開發高效且穩定的 OLED 中的潛力,並可應用於整個可見光譜範圍。 | zh_TW |
| dc.description.abstract | There are two topics in this thesis First, we successfully demonstrated two categories of high-performance organic light-emitting diodes (OLEDs) based on distinct exciton harvesting mechanisms: thermally activated delayed fluorescence (TADF) and triplet–triplet fusion (TTF). The first topic focused on green TADF OLED applications, where we developed two novel quinazoline-based TADF emitters, 10,10'-((5-fluoroquinazoline-2,4-diyl)bis(4,1-phenylene))bis(9,9-dimethyl-9,10- dihydroacridan) (4Ac5FQN) and 10,10''-((5-fluoroquinazoline-2,4-diyl)bis(4,1-phenylene))bis(10H-spiro[acridan9,9'-fluorene]) (4SpAc5FQN), which exhibited excellent external quantum efficiencies (EQE) of 20.2% and 22.1%, respectively. Their small singlet–triplet energy gaps (ΔEST) of 0.02 eV and 0.07 eV facilitated efficient reverse intersystem crossing (RISC), further confirming their strong TADF potential.
Furthermore, in the second topic, we explored blue TTF-based OLEDs using two newly synthesized pyrene derivatives, 1-(3′,4′,5′-triphenyl-[1,1′:2′,1″-terphenyl]-4-yl)pyrene (1PyrB4ph) and 1,1'-(4′,5′,6′-triphenyl-[1,1′:2′,1″-terphenyl]-3′,4″-diyl)dipyrene (1PyrB4phPyr). By incorporating tetraphenylbenzene (4Ph) units, we effectively increased intermolecular spacing, which improved molecular alignment and enhanced angular stability, as verified by angle-dependent photoluminescence (ADPL) measurements. These materials achieved maximum external quantum efficiencies of 11.39% and 10.07%, respectively. Transient electroluminescence (TrEL) measurements showed significant delayed emission ratios of 18% and 9%, which were attributed to the TTF mechanism and further confirmed by magneto-electroluminescence (MEL) analysis. To the best of our knowledge, these represent the highest reported TTF contributions in pyrene-based OLEDs. This study highlighted the potential of both rigid TADF emitters and TTF-enabled host materials in the development of highly efficient and stable OLEDs, with applications across the entire visible spectrum. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:16:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:16:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 iii
摘要 iv Abstract v 材料簡寫 vii Content ix List of Figures xii List of Tables xxii Chapter 1 Introduction 1 1.1 Introduction to OLEDs 2 1.2 TADF Mechanism 3 1.3 Review of TADF OLED 5 1.3.1 Review of OLEDs with DMAC and SpiroAC as the electron donor units 5 1.3.2 High efficiency green TADF OLED based on quinazoline derivatives as the electron acceptor units 8 1.4 TTF Mechanism 13 1.5 Review of TTF OLED 14 1.5.1 High-efficiency blue TTF devices based on pyrene core 14 1.5.2 The impact of tetraphenylbenzene (4Ph) on OLED device 19 1.5.3 TTF-OLEDs under MEL measurement 23 1.6 Motivation 27 Chapter 2 Experimental set up 28 2.1 OLED fabrication 28 2.2 Measurement systems 29 2.2.1 Absorption and PL spectra 29 2.2.2 Photoelectron spectroscopy 30 2.2.3 PLQY and TrPL measurement 31 2.2.4 J-V-L, EQE, and operation lifetime measurements 33 2.2.5 TrEL measurement 34 Chapter 3 High-efficiency green TADF OLEDs with 4Ac5FQN and 4SpAc5FQN as the emitter materials 36 3.1 Introduction 36 3.2 Photophysical properties of 4Ac5FQN and 4SpAc5FQN 37 3.3 Optimized device performances of TADF OLED with 4Ac5FQN and 4SpAc5FQN emitters 43 3.4 Optimization procedure of TADF OLED with 4Ac5FQN as dopant 53 3.4.1 Optimization of dopant concentration 53 3.4.2 Optimization of ETL thickness 60 3.4.3 Optimization of EML thickness 67 3.5 Optimization procedure of TADF OLED with 4SpAc5FQN as dopant 73 3.5.1 Optimization of dopant concentration 73 3.5.2 Optimization of ETL thickness 81 Chapter 4 High-efficiency blue TTF OLEDs with 1PyrB4Ph and 1PyrB4PhPyr as the host materials 87 4.1 Introduction 87 4.2 Photophysical properties of 1PyrB4ph and 1PyrB4phPyr TTF materials 90 4.3 Optimized device performances of 1PyrB4ph- and 1PyrB4phPyr-based OLED 98 4.4 Nondoped device of 1PyrB4ph- and 1PyrB4phPyr-based OLED 107 4.5 Device optimization of 1PyrB4ph-based OLED 114 4.5.1 EML concentration optimization 114 4.5.2 EML thickness optimization 122 4.5.3 ETL thickness optimization 129 4.6 Device optimization of 1PyrB4ph-based OLED with bi-emitting layer structure 136 4.6.1 EML1 thickness optimization 136 4.6.2 EML2 concentration optimization 144 4.6.3 EML2 thickness optimization 151 4.6.4 ETL thickness optimization 159 4.7 Device optimization of 1PyrB4phPyr-based OLED 167 4.7.1 EML concentration optimization 167 4.7.2 EML thickness optimization 175 4.7.3 ETL thickness optimization 182 Chapter 5 Conclusion 189 References 190 | - |
| dc.language.iso | en | - |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 高效率 | zh_TW |
| dc.subject | 熱活化延遲螢光 | zh_TW |
| dc.subject | 三重態-三重態融合 | zh_TW |
| dc.subject | 磁場電激發光 | zh_TW |
| dc.subject | magneto-electroluminescence | en |
| dc.subject | high efficiency | en |
| dc.subject | thermally activated delayed fluorescence | en |
| dc.subject | triplet-triplet fusion | en |
| dc.subject | organic light-emitting diode | en |
| dc.title | 具備熱活化延遲螢光之吖啶-喹唑啉綠色發光體以及三重態-三重態融合特性之芘基-三苯基鄰三聯苯藍色發光體應用於有機發光二極體研究 | zh_TW |
| dc.title | Researches on Organic Light-emitting Diodes Based on Acridan-Quinazoline Green Emitters with Thermally Activated Delayed Fluorescence and Pyrene-Triphenyl o-terphenyl Blue Emitters with Triplet–Triplet Fusion Characteristics. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱天隆;梁文傑;李怡葶 | zh_TW |
| dc.contributor.oralexamcommittee | Tien-Lung Chiu;Man-kit Leung;Yi-Ting Lee | en |
| dc.subject.keyword | 有機發光二極體,高效率,熱活化延遲螢光,三重態-三重態融合,磁場電激發光, | zh_TW |
| dc.subject.keyword | organic light-emitting diode,high efficiency,thermally activated delayed fluorescence,triplet-triplet fusion,magneto-electroluminescence, | en |
| dc.relation.page | 193 | - |
| dc.identifier.doi | 10.6342/NTU202504159 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-10-01 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 12.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
