Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱雪萍zh_TW
dc.contributor.advisorHsueh-Ping Chuen
dc.contributor.author李姿瑢zh_TW
dc.contributor.authorTzu-Rong Leeen
dc.date.accessioned2025-08-20T16:14:11Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation[1] M. Gellert, M. N. Lipsett, and D. R. Davies, "Helix formation by guanylic acid," (in eng), Proc Natl Acad Sci U S A, vol. 48, no. 12, pp. 2013-8, Dec 15 1962, doi: 10.1073/pnas.48.12.2013.
[2] J. You et al., "Effects of monovalent cations on folding kinetics of G-quadruplexes," (in eng), Biosci Rep, vol. 37, no. 4, Aug 31 2017, doi: 10.1042/bsr20170771.
[3] A. Joachimi, A. Benz, and J. S. Hartig, "A comparison of DNA and RNA quadruplex structures and stabilities," (in eng), Bioorg Med Chem, vol. 17, no. 19, pp. 6811-5, Oct 1 2009, doi: 10.1016/j.bmc.2009.08.043.
[4] D. H. Zhang, T. Fujimoto, S. Saxena, H. Q. Yu, D. Miyoshi, and N. Sugimoto, "Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors," (in eng), Biochemistry, vol. 49, no. 21, pp. 4554-63, Jun 1 2010, doi: 10.1021/bi1002822.
[5] R. Hänsel-Hertsch, J. Spiegel, G. Marsico, D. Tannahill, and S. Balasubramanian, "Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing," (in eng), Nat Protoc, vol. 13, no. 3, pp. 551-564, Mar 2018, doi: 10.1038/nprot.2017.150.
[6] G. Marsico et al., "Whole genome experimental maps of DNA G-quadruplexes in multiple species," (in eng), Nucleic Acids Res, vol. 47, no. 8, pp. 3862-3874, May 7 2019, doi: 10.1093/nar/gkz179.
[7] M. Zhang et al., "Mammalian CST averts replication failure by preventing G-quadruplex accumulation," (in eng), Nucleic Acids Res, vol. 47, no. 10, pp. 5243-5259, Jun 4 2019, doi: 10.1093/nar/gkz264.
[8] L. I. Jansson et al., "Telomere DNA G-quadruplex folding within actively extending human telomerase," (in eng), Proc Natl Acad Sci U S A, vol. 116, no. 19, pp. 9350-9359, May 7 2019, doi: 10.1073/pnas.1814777116.
[9] A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, and L. H. Hurley, "Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription," (in eng), Proc Natl Acad Sci U S A, vol. 99, no. 18, pp. 11593-8, Sep 3 2002, doi: 10.1073/pnas.182256799.
[10] J. A. Smestad and L. J. Maher, 3rd, "Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription," (in eng), BMC Med Genet, vol. 16, p. 91, Oct 8 2015, doi: 10.1186/s12881-015-0236-4.
[11] J. Spiegel, S. M. Cuesta, S. Adhikari, R. Hänsel-Hertsch, D. Tannahill, and S. Balasubramanian, "G-quadruplexes are transcription factor binding hubs in human chromatin," (in eng), Genome Biol, vol. 22, no. 1, p. 117, Apr 23 2021, doi: 10.1186/s13059-021-02324-z.
[12] J. Shen et al., "Promoter G-quadruplex folding precedes transcription and is controlled by chromatin," (in eng), Genome Biol, vol. 22, no. 1, p. 143, May 7 2021, doi: 10.1186/s13059-021-02346-7.
[13] C. M. Azzalin, P. Reichenbach, L. Khoriauli, E. Giulotto, and J. Lingner, "Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends," (in eng), Science, vol. 318, no. 5851, pp. 798-801, Nov 2 2007, doi: 10.1126/science.1147182.
[14] S. Schoeftner and M. A. Blasco, "Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II," (in eng), Nat Cell Biol, vol. 10, no. 2, pp. 228-36, Feb 2008, doi: 10.1038/ncb1685.
[15] Y. Mei et al., "TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity," (in eng), Sci Rep, vol. 11, no. 1, p. 3509, Feb 10 2021, doi: 10.1038/s41598-021-82406-x.
[16] M. Feretzaki, M. Pospisilova, R. Valador Fernandes, T. Lunardi, L. Krejci, and J. Lingner, "RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops," (in eng), Nature, vol. 587, no. 7833, pp. 303-308, Nov 2020, doi: 10.1038/s41586-020-2815-6.
[17] Z. Deng, J. Norseen, A. Wiedmer, H. Riethman, and P. M. Lieberman, "TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres," (in eng), Mol Cell, vol. 35, no. 4, pp. 403-13, Aug 28 2009, doi: 10.1016/j.molcel.2009.06.025.
[18] H. P. Chu et al., "TERRA RNA Antagonizes ATRX and Protects Telomeres," (in eng), Cell, vol. 170, no. 1, pp. 86-101.e16, Jun 29 2017, doi: 10.1016/j.cell.2017.06.017.
[19] S. Redon, P. Reichenbach, and J. Lingner, "The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase," (in eng), Nucleic Acids Res, vol. 38, no. 17, pp. 5797-806, Sep 2010, doi: 10.1093/nar/gkq296.
[20] I.-T. Chiang, "TERRA acts as an epigenetic regulator to maintain DNA G-quadruplex formation in the genome," M.S. M.S., Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan, 2023.
[21] R. X. Tsai et al., "TERRA regulates DNA G-quadruplex formation and ATRX recruitment to chromatin," (in eng), Nucleic Acids Res, vol. 50, no. 21, pp. 12217-12234, Nov 28 2022, doi: 10.1093/nar/gkac1114.
[22] M. DeJesus-Hernandez et al., "Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS," (in eng), Neuron, vol. 72, no. 2, pp. 245-56, Oct 20 2011, doi: 10.1016/j.neuron.2011.09.011.
[23] A. E. Renton et al., "A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD," (in eng), Neuron, vol. 72, no. 2, pp. 257-68, Oct 20 2011, doi: 10.1016/j.neuron.2011.09.010.
[24] P. E. Ash et al., "Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS," (in eng), Neuron, vol. 77, no. 4, pp. 639-46, Feb 20 2013, doi: 10.1016/j.neuron.2013.02.004.
[25] F. Frottin, M. Pérez-Berlanga, F. U. Hartl, and M. S. Hipp, "Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G(4)C(2) RNA in a cellular model," (in eng), Elife, vol. 10, Jun 23 2021, doi: 10.7554/eLife.62718.
[26] B. Swinnen et al., "A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism," (in eng), Acta Neuropathol, vol. 135, no. 3, pp. 427-443, Mar 2018, doi: 10.1007/s00401-017-1796-5.
[27] Y. B. Lee et al., "Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic," (in eng), Cell Rep, vol. 5, no. 5, pp. 1178-86, Dec 12 2013, doi: 10.1016/j.celrep.2013.10.049.
[28] S. Rossi et al., "Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS," (in eng), J Cell Sci, vol. 128, no. 9, pp. 1787-99, May 1 2015, doi: 10.1242/jcs.165332.
[29] Q. Wang, E. G. Conlon, J. L. Manley, and D. C. Rio, "Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains," (in eng), Genome Res, vol. 30, no. 12, pp. 1705-1715, Dec 2020, doi: 10.1101/gr.265298.120.
[30] Z. F. Wang et al., "The Hairpin Form of r(G(4)C(2))(exp) in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules," (in eng), Cell Chem Biol, vol. 26, no. 2, pp. 179-190.e12, Feb 21 2019, doi: 10.1016/j.chembiol.2018.10.018.
[31] P. Fratta et al., "C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes," (in eng), Sci Rep, vol. 2, p. 1016, 2012, doi: 10.1038/srep01016.
[32] A. Ishiguro, J. Lu, D. Ozawa, Y. Nagai, and A. Ishihama, "ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition," (in eng), J Biol Chem, vol. 297, no. 5, p. 101284, Nov 2021, doi: 10.1016/j.jbc.2021.101284.
[33] J. K. Karow, R. K. Chakraverty, and I. D. Hickson, "The Bloom's syndrome gene product is a 3'-5' DNA helicase," (in eng), J Biol Chem, vol. 272, no. 49, pp. 30611-4, Dec 5 1997, doi: 10.1074/jbc.272.49.30611.
[34] S. Lee, A. R. Lee, K. S. Ryu, J. H. Lee, and C. J. Park, "NMR Investigation of the Interaction between the RecQ C-Terminal Domain of Human Bloom Syndrome Protein and G-Quadruplex DNA from the Human c-Myc Promoter," (in eng), J Mol Biol, vol. 431, no. 4, pp. 794-806, Feb 15 2019, doi: 10.1016/j.jmb.2019.01.010.
[35] J. B. Budhathoki, E. J. Stafford, J. G. Yodh, and H. Balci, "ATP-dependent G-quadruplex unfolding by Bloom helicase exhibits low processivity," (in eng), Nucleic Acids Res, vol. 43, no. 12, pp. 5961-70, Jul 13 2015, doi: 10.1093/nar/gkv531.
[36] R. Tippana, H. Hwang, P. L. Opresko, V. A. Bohr, and S. Myong, "Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases," (in eng), Proc Natl Acad Sci U S A, vol. 113, no. 30, pp. 8448-53, Jul 26 2016, doi: 10.1073/pnas.1603724113.
[37] H. Sun, J. K. Karow, I. D. Hickson, and N. Maizels, "The Bloom's syndrome helicase unwinds G4 DNA," (in eng), J Biol Chem, vol. 273, no. 42, pp. 27587-92, Oct 16 1998, doi: 10.1074/jbc.273.42.27587.
[38] W. C. Drosopoulos, S. T. Kosiyatrakul, and C. L. Schildkraut, "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres," (in eng), J Cell Biol, vol. 210, no. 2, pp. 191-208, Jul 20 2015, doi: 10.1083/jcb.201410061.
[39] N. van Wietmarschen, S. Merzouk, N. Halsema, D. C. J. Spierings, V. Guryev, and P. M. Lansdorp, "BLM helicase suppresses recombination at G-quadruplex motifs in transcribed genes," (in eng), Nat Commun, vol. 9, no. 1, p. 271, Jan 18 2018, doi: 10.1038/s41467-017-02760-1.
[40] Y. M. Danino et al., "BLM helicase protein negatively regulates stress granule formation through unwinding RNA G-quadruplex structures," (in eng), Nucleic Acids Res, vol. 51, no. 17, pp. 9369-9384, Sep 22 2023, doi: 10.1093/nar/gkad613.
[41] J. Yang et al., "Structures of CTCF-DNA complexes including all 11 zinc fingers," (in eng), Nucleic Acids Res, vol. 51, no. 16, pp. 8447-8462, Sep 8 2023, doi: 10.1093/nar/gkad594.
[42] H. Nakahashi et al., "A genome-wide map of CTCF multivalency redefines the CTCF code," (in eng), Cell Rep, vol. 3, no. 5, pp. 1678-1689, May 30 2013, doi: 10.1016/j.celrep.2013.04.024.
[43] A. C. Bell, A. G. West, and G. Felsenfeld, "The protein CTCF is required for the enhancer blocking activity of vertebrate insulators," (in eng), Cell, vol. 98, no. 3, pp. 387-96, Aug 6 1999, doi: 10.1016/s0092-8674(00)81967-4.
[44] J. R. Dixon et al., "Topological domains in mammalian genomes identified by analysis of chromatin interactions," (in eng), Nature, vol. 485, no. 7398, pp. 376-80, Apr 11 2012, doi: 10.1038/nature11082.
[45] S. S. Rao et al., "A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping," (in eng), Cell, vol. 159, no. 7, pp. 1665-80, Dec 18 2014, doi: 10.1016/j.cell.2014.11.021.
[46] E. de Wit et al., "CTCF Binding Polarity Determines Chromatin Looping," (in eng), Mol Cell, vol. 60, no. 4, pp. 676-84, Nov 19 2015, doi: 10.1016/j.molcel.2015.09.023.
[47] G. Wutz et al., "Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins," (in eng), Embo j, vol. 36, no. 24, pp. 3573-3599, Dec 15 2017, doi: 10.15252/embj.201798004.
[48] I. F. Davidson et al., "CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion," (in eng), Nature, vol. 616, no. 7958, pp. 822-827, Apr 2023, doi: 10.1038/s41586-023-05961-5.
[49] B. Xu et al., "Acute depletion of CTCF rewires genome-wide chromatin accessibility," (in eng), Genome Biol, vol. 22, no. 1, p. 244, Aug 24 2021, doi: 10.1186/s13059-021-02466-0.
[50] P. T. Li et al., "Expression of the human telomerase reverse transcriptase gene is modulated by quadruplex formation in its first exon due to DNA methylation," (in eng), J Biol Chem, vol. 292, no. 51, pp. 20859-20870, Dec 22 2017, doi: 10.1074/jbc.M117.808022.
[51] P. Wulfridge et al., "G-quadruplexes associated with R-loops promote CTCF binding," (in eng), Mol Cell, vol. 83, no. 17, pp. 3064-3079.e5, Sep 7 2023, doi: 10.1016/j.molcel.2023.07.009.
[52] R. Saldaña-Meyer et al., "CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53," (in eng), Genes Dev, vol. 28, no. 7, pp. 723-34, Apr 1 2014, doi: 10.1101/gad.236869.113.
[53] H. J. Oh et al., "Jpx RNA regulates CTCF anchor site selection and formation of chromosome loops," (in eng), Cell, vol. 184, no. 25, pp. 6157-6173.e24, Dec 9 2021, doi: 10.1016/j.cell.2021.11.012.
[54] S. Kuang and L. Wang, "Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation," (in eng), J Comput Biol, vol. 28, no. 2, pp. 133-145, Feb 2021, doi: 10.1089/cmb.2020.0225.
[55] C. Y. Wang, T. Jégu, H. P. Chu, H. J. Oh, and J. T. Lee, "SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X," (in eng), Cell, vol. 174, no. 2, pp. 406-421.e25, Jul 12 2018, doi: 10.1016/j.cell.2018.05.007.
[56] G. Nagy et al., "Motif oriented high-resolution analysis of ChIP-seq data reveals the topological order of CTCF and cohesin proteins on DNA," (in eng), BMC Genomics, vol. 17, no. 1, p. 637, Aug 15 2016, doi: 10.1186/s12864-016-2940-7.
[57] J. T. Kung et al., "Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF," (in eng), Mol Cell, vol. 57, no. 2, pp. 361-75, Jan 22 2015, doi: 10.1016/j.molcel.2014.12.006.
[58] K. Hirashima and H. Seimiya, "Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo," (in eng), Nucleic Acids Res, vol. 43, no. 4, pp. 2022-32, Feb 27 2015, doi: 10.1093/nar/gkv063.
[59] M. M. Fay, P. J. Anderson, and P. Ivanov, "ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells," (in eng), Cell Rep, vol. 21, no. 12, pp. 3573-3584, Dec 19 2017, doi: 10.1016/j.celrep.2017.11.093.
[60] R. N. Plasschaert et al., "CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation," (in eng), Nucleic Acids Res, vol. 42, no. 2, pp. 774-89, Jan 2014, doi: 10.1093/nar/gkt910.
[61] A. Barral et al., "SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers," (in eng), Mol Cell, vol. 82, no. 4, pp. 816-832.e12, Feb 17 2022, doi: 10.1016/j.molcel.2021.12.037.
[62] M. H. Kagey et al., "Mediator and cohesin connect gene expression and chromatin architecture," (in eng), Nature, vol. 467, no. 7314, pp. 430-5, Sep 23 2010, doi: 10.1038/nature09380.
[63] A. Del Moral-Morales, M. Salgado-Albarrán, Y. Sánchez-Pérez, N. K. Wenke, J. Baumbach, and E. Soto-Reyes, "CTCF and Its Multi-Partner Network for Chromatin Regulation," (in eng), Cells, vol. 12, no. 10, May 10 2023, doi: 10.3390/cells12101357.
[64] D. Szklarczyk et al., "The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets," (in eng), Nucleic Acids Res, vol. 49, no. D1, pp. D605-d612, Jan 8 2021, doi: 10.1093/nar/gkaa1074.
[65] M. Kotlyar, C. Pastrello, Z. Ahmed, J. Chee, Z. Varyova, and I. Jurisica, "IID 2021: towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis," (in eng), Nucleic Acids Res, vol. 50, no. D1, pp. D640-d647, Jan 7 2022, doi: 10.1093/nar/gkab1034.
[66] G. Hu, X. Dong, S. Gong, Y. Song, A. P. Hutchins, and H. Yao, "Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions," (in eng), Nucleic Acids Res, vol. 48, no. 17, pp. 9606-9620, Sep 25 2020, doi: 10.1093/nar/gkaa705.
[67] S. C. Hsu et al., "The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries," (in eng), Mol Cell, vol. 66, no. 1, pp. 102-116.e7, Apr 6 2017, doi: 10.1016/j.molcel.2017.02.027.
[68] K. Ishihara, M. Oshimura, and M. Nakao, "CTCF-dependent chromatin insulator is linked to epigenetic remodeling," (in eng), Mol Cell, vol. 23, no. 5, pp. 733-42, Sep 1 2006, doi: 10.1016/j.molcel.2006.08.008.
[69] G. Ren et al., "Acute depletion of BRG1 reveals its primary function as an activator of transcription," (in eng), Nat Commun, vol. 15, no. 1, p. 4561, May 29 2024, doi: 10.1038/s41467-024-48911-z.
[70] C. Hoencamp and B. D. Rowland, "Genome control by SMC complexes," (in eng), Nat Rev Mol Cell Biol, vol. 24, no. 9, pp. 633-650, Sep 2023, doi: 10.1038/s41580-023-00609-8.
[71] J. Minderjahn et al., "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," (in eng), Nat Commun, vol. 13, no. 1, p. 4301, Jul 25 2022, doi: 10.1038/s41467-022-31892-2.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98906-
dc.description.abstractG-四聯體是由富含鳥糞嘌玲的核酸序列摺疊形成的非典型二級結構,可透過去氧核醣核酸(DNA)或核醣核酸(RNA)構成。DNA G-四聯體廣泛分布於基因組中,並參與DNA複製、轉錄和基因組穩定性的調控。TERRA是一類由RNA聚合酶Ⅱ從次端粒和端粒區域轉錄而成的長片段非編碼RNA,含有不等數量的UUAGGG重複序列,可摺疊形成RNA G-四聯體結構。之前研究顯示TERRA可與G4解旋酶BLM結合。在小鼠胚胎幹細胞中進行TERRA下調處理後,BLM在染色質的結合量上升,且DNA G-四聯體的形成下降。
為了確認TERRA能否透過其富含鳥糞嘌呤的重複序列調控DNA G-四聯體形成,我們將含有四個UUAGGG重複序列的RNA(TERRA RNA)轉染至HeLa細胞中。免疫螢光染色結果顯示,BLM在染色質的結合下降,而核內DNA G-四聯體訊號上升,進一步支持TERRA具備促進DNA G-四聯體形成的想法。
為了進一步探討TERRA的表觀遺傳功能,之前研究整合ChIP-seq與RNA-seq資料,發現TERRA下調會導致部分基因轉錄起始點(TSS)附近的DNA G-四聯體訊號下降,而且這些基因與TERRA下調後表現量降低的基因有關。近期有其他研究指出DNA G-四聯體可能影響CTCF的DNA結合調控。CTCF是一種高度保守的染色質結構蛋白,參與染色質圈構(chromatin looping)的形成,並影響基因表現。為了確認TERRA能否藉由DNA G-四聯體的調控進一步影響CTCF與染色質的結合,我們在TERRA下調的小鼠胚胎幹細胞中進行CTCF ChIP-seq實驗,觀察到大多數CTCF在結合位點都有訊號上升的趨勢,而且在G4訊號下降的位置,CTCF訊號上升程度更為顯著。然而,這些位點附近的G-四聯體訊號變化不一,顯示CTCF結合的改變可能並非單純由DNA G-四聯體調控所致。此外,CTCF與cohesin共結合的區域訊號上升更為顯著,暗示TERRA可能參與染色質三維結構的調控。
綜上所述,本研究透過TERRA RNA轉染系統與TERRA KD系統,分別確認TERRA會影響染色質上的BLM結合與DNA G-四聯體的形成,並進一步指出TERRA可能透過對CTCF的影響,揭示潛在的表觀遺傳調控機制。
zh_TW
dc.description.abstractG-quadruplexes (G4) are noncanonical secondary structures formed by guanine-rich sequences in DNA and RNA. DNA G4s are widely distributed throughout the genome and play roles in regulating replication, transcription, and genome stability. TERRA, a long non-coding RNA transcribed by RNA polymeraseⅡ, transcribed from subtelomeric regions to telomeres, with varying numbers of UUAGGG repeats capable of forming RNA G4 structures. TERRA has been shown to interact with BLM, an ATP-dependent helicase known to unwind G4 structure, and TERRA knockdown in mESCs leads to increased BLM occupancy and reduced DNA G4 levels.
To examine whether TERRA regulates DNA G4 through its G-rich repetitive sequences, we introduced synthetic TERRA RNA oligos containing four tandem UUAGGG repeats into HeLa cells. Immunofluorescence staining revealed that TERRA RNA reduced BLM occupancy and increased nuclear DNA G4 signals, suggesting that TERRA promotes G4 formation.
To further investigate the epigenetic role of TERRA, integrated analyses of G4 ChIP-seq and RNA-seq showed that TERRA knockdown led to G4 signal reduction near the transcription start sites (TSSs), particularly in genes downregulated upon TERRA depletion. Given that studies from other labs revealed that G4 formation may influence CTCF binding, we tested whether TERRA regulates CTCF binding to chromatin. CTCF ChIP-seq analysis revealed a genome-wide increase in CTCF occupancy in TERRA knockdown mESCs. Notably, G4 reduction correlates with the greatest increase in CTCF binding. However, changes in G4 signal near CTCF binding sites were not positively correlated with changes in CTCF occupancy in TERRA knockdown cells, suggesting that G4 modulation alone may not fully account for the increased in CTCF occupancy upon TERRA depletion.
Moreover, the increase in CTCF binding was more pronounced at sites co-occupied with cohesin complexes, implicating a potential role for TERRA in modulating chromatin looping via the CTCF-cohesin axis. Taken together, our findings suggest a previously unrecognized epigenetic mechanism by which TERRA influences chromatin architecture and regulates gene expression.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:14:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:14:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents vii
Contents of Figure xi
Contents of Table xiii
Contents of Supplementary Figure xiv
Contents of Supplementary Table xv
Abbreviations xvi
Chapter 1 Introduction 1
1.1 G-quadruplex (G4) 1
1.2 Telomeric Repeat-Containing RNA (TERRA) 2
1.3 G4C2 repeats in C9orf72 gene 4
1.4 BLM (Bloom’s syndrome helicase) 5
1.5 CCCTC-binding factor (CTCF) 7
1.6 Hypothesis and aim in this study 9
Chapter 2 Materials and Methods 11
2.1 HeLa cell culture 11
2.2 Small RNA transfection 11
2.3 Slide preparation for staining 12
2.4 Immunofluorescence (IF) 12
2.5 Microscopy data quantification 13
2.6 Mouse embryonic stem (ES) cell culture 13
2.7 TERRA knockdown 14
2.8 RNA extraction 15
2.9 cDNA synthesis 16
2.10 qPCR (Real-time Quantitative Polymerase Chain Reaction) 16
2.11 Chromatin immunoprecipitation for CTCF 17
2.12 Library preparation for sequencing 21
2.13 NGS analysis for CTCF ChIP-seq 24
2.14 NGS analysis for DNA G4 signal nearby CTCF binding sites 27
2.15 NGS analysis of CTCF signal at CTCF binding sites with or without cohesin co-binding 29
2.16 Cell fractionation 30
2.17 Western blotting 31
2.18 Quantification for western blotting 33
2.19 NGS analysis for CTCF CLIP-seq 33
2.20 NGS analysis for TERRA KD RNA-seq 34
Chapter 3 Results 35
3.1 RNA G4 promotes DNA G4 formation and reduce BLM occupancy. 35
3.2 Investigation of CTCF occupancy upon TERRA depletion in mESCs. 37
3.3 CTCF occupancy increases upon TERRA depletion. 39
3.4 CTCF binding increases significantly in regions with G4 reduction. 41
3.5 Increased CTCF occupancy after TERRA KD is more pronounced at cohesin co-binding sites 43
3.6 TERRA KD leads to a modest increase in CTCF chromatin occupancy 44
Chapter 4 Discussion 45
Chapter 5 Figures and Tables 54
Chapter 6 Supplementary Figures and Tables 84
Chapter 7 References 101
-
dc.language.isoen-
dc.subjectTERRAzh_TW
dc.subjectG-四聯體zh_TW
dc.subjectDNA G-四聯體zh_TW
dc.subjectBLMzh_TW
dc.subjectCTCFzh_TW
dc.subjectTERRAen
dc.subjectCTCFen
dc.subjectDNA G-quadruplexen
dc.subjectBLMen
dc.subjectG-quadruplexen
dc.titleTERRA RNA對基因組中G4與CTCF的影響zh_TW
dc.titleTERRA RNA impacts G-quadruplexes and CTCF occupancy across the genomeen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林敬哲;陳世淯zh_TW
dc.contributor.oralexamcommitteeJing-Jer Lin;Shih-Yu Chenen
dc.subject.keywordTERRA,G-四聯體,DNA G-四聯體,BLM,CTCF,zh_TW
dc.subject.keywordTERRA,G-quadruplex,DNA G-quadruplex,BLM,CTCF,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202504256-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved