請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允中 | zh_TW |
| dc.contributor.advisor | Jonathan Lee | en |
| dc.contributor.author | 謝承恩 | zh_TW |
| dc.contributor.author | Cheng-En Hsieh | en |
| dc.date.accessioned | 2025-08-20T16:13:56Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | O. Asare, M. Nagappan, and N. Asokan. Is github's copilot as bad as humans at introducing vulnerabilities in code? Empirical Software Engineering, 28(6):129, 2023.
Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, et al. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023. H. Bogumiła, H. Zbigniew, T. Lech, and D. Iwona. Conceptual modeling using knowledge of domain ontology. In Asian Conference on Intelligent Information and Database Systems, pages 554–564. Springer, 2016. M. Bonfè, C. Fantuzzi, and C. Secchi. Design patterns for model-based automation software design and implementation. Control Engineering Practice, 21(11):1608–1619, 2013. A. Brandolini. Introducing event storming. blog, Ziobrando's Lair, 18, 2013. T. Caselli and P. Vossen. The event storyline corpus: A new benchmark for causal and temporal relation extraction. In Proceedings of the Events and Stories in the News Workshop, pages 77–86, 2017. S.-Y. Chu. Automate event storming process to derive bounded contexts from ears requirements. Master’s thesis, National Taiwan University, July 2024. B. Curtis. Insights from empirical studies of the software design process. Future Generation Computer Systems, 7(2-3):139–149, 1992. E. Evans. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional, 2004. Explosion. spacy-experimental: Cutting-edge experimental spacy components and features. https://github.com/explosion/spacy-experimental, Nov. 2023. M. S. Feather, S. Fickas, A. Finkelstein, and A. Van Lamsweerde. Requirements and specification exemplars. Automated Software Engineering, 4:419–438, 1997. M. Honnibal, I. Montani, S. Van Landeghem, A. Boyd, et al. spacy: Industrial-strength natural language processing in python. 2020. V. Khononov. Learning domain-driven design. https://github.com/vladikk/learning-ddd, 2023. H. Man, F. Dernoncourt, and T. H. Nguyen. Mastering context-to-label representation transformation for event causality identification with diffusion models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 18760–18768, 2024. H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. Asleep at the keyboard? assessing the security of github copilot's code contributions. Communications of the ACM, 68(2):96–105, 2025. D. M. Powers. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020. S. Si-Said Cherfi, S. Ayad, and I. Comyn-Wattiau. Improving business process model quality using domain ontologies. Journal on Data Semantics, 2(2):75–87, 2013. J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C. Schmidt. A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023. J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt. Chatgpt prompt patterns for improving code quality, refactoring, requirements elicitation, and software design. In Generative AI for Effective Software Development, pages 71–108. Springer, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98905 | - |
| dc.description.abstract | 軟體開發除了撰寫程式碼,亦須理解問題所屬的專業領域。領域驅動設計(Domain-Driven Design, DDD)透過事件激盪(Event Storming)與限界上下文(Bounded Context),將業務邏輯有效融入系統設計。然而,此過程高度依賴開發人員與領域專家的密集溝通,導致成本高昂。為解決此問題,本研究提出一套自動化的事件激盪流程,結合事件因果關係識別(Event Causality Identification)與自然語言處理(NLP)技術,從使用案例規格中自動推導限界上下文邊界,並依據 DDD 模型進行細部設計。本方法可有效降低溝通成本,提升軟體設計流程的效率。此外,本研究亦提出一套評估機制,以衡量自動化產出的限界上下文品質,驗證方法之可行性與實用性。 | zh_TW |
| dc.description.abstract | Understanding the problem domain is as critical to software development as writing code. Domain-Driven Design (DDD) addresses this by integrating business logic into sys tem architecture through methods such as Event Storming and Bounded Contexts. How ever, these practices typically demand extensive collaboration between developers and domain experts, which can be time-consuming and costly. This study presents an auto mated Event Storming approach that combines Event Causality Identification with natural language processing (NLP) techniques. Given use case specifications as input, the sys tem automatically identifies Bounded Context boundaries and generates detailed design models aligned with DDD principles. This approach reduces the need for intensive human collaboration and enhances the efficiency of the design process. Additionally, the study proposes an evaluation framework to assess the quality of the automatically generated Bounded Contexts, demonstrating both the feasibility and practical value of the method. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:13:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:13:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures ix List of Tables x Chapter1 Introduction 1 Chapter2 Background Work 3 2.1 Event Storming 3 2.2 Domain-Driven Design 4 2.3 Use Case Specification 5 2.4 Event Causality Identification 6 Chapter3 Related Work 7 3.1 Enhancing Software Design by Leveraging Domain Knowledge 7 3.2 Automating Software Design Process 7 3.3 Automating Event Storming Process 8 Chapter4 The Process of Deriving Bounded Contexts 9 4.1 System Overview 9 4.2 Natural Language Processing Techniques 11 4.2.1 Part-Of-Speech Tagging 11 4.2.2 Syntactic Dependency Parsing 11 4.2.3 Semantic Role Labeling 12 4.2.4 Coreference Resolution 13 4.3 Mapping Table 13 4.3.1 Mapping From Use Case Names 13 4.3.2 Mapping From Actors 14 4.3.3 Mapping From Pre-conditions 14 4.3.4 Mapping From Post-conditions 15 4.3.5 Mapping From Actions 15 4.3.6 Mapping From UI Element Names 16 4.3.7 Mapping From Input Data 16 4.3.8 Mapping From Display Details 17 4.4 Domain Object Resolution Mechanism 17 4.5 Strategic Design 18 4.5.1 Extract Domain Events 18 4.5.2 Extract Commands 19 4.5.3 Pair Commands with Events 20 4.5.4 Assign Actors to Commands 20 4.5.5 Define Policies 20 4.5.6 Group Command-Event Pairs into Aggregates 21 4.5.7 Group Aggregates into Bounded Contexts 22 4.6 Tactical Design 23 4.6.1 Collect More Domain Objects 23 4.6.2 Build Hierarchy 23 4.6.3 Classify Different Domain Object Types 25 Chapter5 Evaluation Mechanism 27 5.1 Coverage Score 28 5.2 Boundary Score 28 5.3 Structure Score 29 5.4 Classification Score 30 Chapter6 Case Study: Meeting Scheduler System 31 6.1 Input 32 6.2 Strategic Design 32 6.2.1 Extract Domain Events 32 6.2.2 Extract Commands 33 6.2.3 Pair Commands with Events 34 6.2.4 Assign Actors to Commands 34 6.2.5 Define Policies 34 6.2.6 Group Command-Event Pairs into Aggregates 36 6.2.7 Group Aggregates into Bounded Contexts 36 6.3 Tactical Design 37 6.3.1 Collect More Domain Objects 37 6.3.2 Build Hierarchy 38 6.3.3 Classify Different Domain Object Types 38 6.4 Evaluation 39 6.5 Discussion 41 Chapter7 Conclusion 42 Chapter8 Future Work 43 References 45 | - |
| dc.language.iso | en | - |
| dc.subject | 領域驅動設計 | zh_TW |
| dc.subject | 事件激盪 | zh_TW |
| dc.subject | 使用案例規格 | zh_TW |
| dc.subject | 事件因果關係識別 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | Natural Language Processing | en |
| dc.subject | Event Causality Identification | en |
| dc.subject | Use Case Specification | en |
| dc.subject | Domain-Driven Design | en |
| dc.subject | Event Storming | en |
| dc.title | 自動化事件激盪流程 | zh_TW |
| dc.title | Auto Event-Storming Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉立頌;郭大維;蘇木春;蔣偉寧 | zh_TW |
| dc.contributor.oralexamcommittee | Alan Liu;Tei-Wei Kuo ;Mu-Chun Su;Wei-Ling Chiang | en |
| dc.subject.keyword | 事件激盪,領域驅動設計,自然語言處理,事件因果關係識別,使用案例規格, | zh_TW |
| dc.subject.keyword | Event Storming,Domain-Driven Design,Natural Language Processing,Event Causality Identification,Use Case Specification, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202503969 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
