請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 戴進華 | zh_TW |
| dc.contributor.author | Chin-Hua Tai | en |
| dc.date.accessioned | 2025-08-20T16:13:41Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | 1. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301-334.
2. Nandakumar S, Cech TR. Structural biology of shelterin and telomeric chromatin. Curr Opin Struct Biol. 2024;79:102632. 3. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503-514. 4. Olovnikov AM. Principle of marginotomy in the synthesis of polynucleotides. J Theor Biol. 1973;41:181-190. 5. Coluzzi E, et al. Factors that influence telomeric oxidative base damage and repair. DNA Repair. 2014;21:60-70. 6. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA-damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194-198. 7. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011-2015. 8. Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20:299-309. 9. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11:319-330. 10. Dilley RL, Verma P, Cho NW, et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature. 2016;539:54-58. 11. Henson JD, Neumann AA, Yeager TR, Reddel RR. Assay for monitoring ALT activity in mammalian cells. Nat Protoc. 2009;4:1831-1843. 12. Arora R, Lee YC, Wischnewski H, et al. RNase H1 regulates TERRA-dependent R-loop formation at telomeres. Nat Commun. 2014;5:5220. 13. Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumours with ATRX and DAXX mutations. Nat Genet. 2011;43:748-753. 14. Lovejoy CA, Li W, Reisenweber S, et al. Loss of ATRX, genome instability and an altered DNA damage response are hallmarks of ALT. PLoS Genet. 2012;8:e1002772. 15. Carson LM, Flynn RL. Highlighting vulnerabilities in the alternative lengthening of telomeres pathway. Curr Opin Pharmacol. 2023;70:102380. 16. Paeschke K, Bochman ML, Garcia PD, et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013;497:458-462. 17. Flynn RL, Cox KE, Jeitany M, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347:273-277. 18. Deeg KI, et al. Cancer cells with ALT do not display general hypersensitivity to ATR inhibition. Front Oncol. 2016;6:186. 19. Hansel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18:279-284. 20. Li Y, Smith P, LaBoissiere S, et al. Elevated ROS drives telomeric R-loop accumulation and sustains ALT activity. Nat Commun. 2024;15:4112. 21. Panda S, Avin B, Gupta R, et al. Promoter G-quadruplex stabilisation selectively kills ALT cancer cells. ACS Chem Biol. 2024;19:1433-1439. 22. Santamaría-Nuñez G, Vara-Ciruelos D, Moneo V, et al. Lurbinectedin triggers degradation of phosphorylated RNA polymerase II. Mol Cancer Ther. 2016;15:2399-2412. 23. Trigo J, et al. Lurbinectedin as second-line treatment for small-cell lung cancer. Lancet Oncol. 2020;21:645-653. 24. Leal JF, Martínez-Díez M, García-Hernández V, et al. PM01183 (lurbinectedin) inhibits growth of soft-tissue sarcoma models. Drugs. 2020;80:2189-2200. 25. Conroy R. Lurbinectedin plus atezolizumab earns FDA priority review for ES-SCLC maintenance (IMforte trial). Cancer Network News. 2025 Jun 10. 1. de Lange T. How telomeres solve the end-protection problem. Nat Rev Genet 2009;10:299–305. 2. Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science 2001;292:2075–2077. 3. Azzalin CM, Reichenbach P, Khoriauli L, et al. Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007;318:798–801. 4. Rudenko G, van der Ploeg LHT. Transcription of telomere repeats in trypanosomes. Cell 1989;57:351–361. 5. Vrbsky J, Akimcheva S, Watson JM, et al. siRNA-mediated methylation of Arabidopsis telomeres. EMBO J 2010;29:588–599. 6. Azzalin CM, Lingner J. Telomeric repeat-containing RNA: a link between telomeres and genome integrity. Cell Cycle 2008;7:1176–1181. 7. Nergadze SG, Farnung BO, et al. CpG-island subtelomeric promoters drive formation of TERRA transcripts. RNA 2009;15:1807–1815. 8. Feretzaki M, Pospisilova B, Lingner J. CTCF promotes telomere transcription and telomere protection. RNA 2019;25:805–819. 9. Graf M, Bielak-Zmijewska A, et al. Telomere R-loops and telomere fragility in ALT cancer cells. Cell 2017;170:1135–1147. 10. Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles. Nat Struct Mol Biol 2015;22:17–25. 11. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres. Nat Cell Biol 2008;10:228–236. 12. Chawla R, Redon S, Raftopoulou C, et al. Telomerase RNA levels are regulated by telomere length in ALT cells. Nat Struct Mol Biol 2011;18:85–90. 13. Chu HP, Cifuentes-Rojas C, Kesner B, et al. TERRA RNA antagonizes ATRX and modulates heterochromatin. Nat Commun 2017;8:15466. 14. Clynes D, Higgs DR, Gibbons RJ. ATRX and TERRA interactions at repetitive chromatin. Nat Commun 2015;6:7623. 15. Savoca V, Patsenker J, et al. RALY binds and stabilizes TERRA lncRNA. Cell Rep 2023;42:112230. 16. Wanat JJ, Lamarche BJ, et al. TERRA overexpression accelerates senescence in telomerase-null yeast. PLoS One 2018;13:e0203779. 17. Aguado J, Sola P, Jimenez-Gomez DE, et al. Telomere dysfunction induces TERRA up-regulation in Hutchinson–Gilford progeria. Nat Commun 2019;10:5281. 18. Tsai RX, Fang KC, Yang PC, Hsieh YH, Chiang IT, Chen Y, et al. TERRA regulates DNA G-quadruplex formation and ATRX recruitment to chromatin. Nucleic Acids Research. 2022 Nov 28;50(21):12217-12234. 19. Hsieh YH, Tai CH, Yeh MT, Chen YC, Yang PC, Yen CP, et al. Telomeric repeat-containing RNA increases in aged human cells. Nucleic Acids Research. 2025 Jul 8;53(13):gkaf597. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98904 | - |
| dc.description.abstract | 端粒維持機制在癌症進展與細胞老化中扮演關鍵角色。多數癌細胞依賴端粒酶以維持端粒長度,然而約有10-15%的癌症,特別是肉瘤,則使用另一種機制,稱為非典型端粒延長模式(alternative lengthening of telomeres, ALT)。ALT癌細胞常對傳統化學治療藥物產生抗藥性,因此尋找新的治療策略至關重要。本研究利用生物素標記的 lurbinectedin 結合chem-seq技術,探討其在 ALT 陽性癌細胞中的基因組結合分佈。我們的結果顯示,lurbinectedin 偏好結合於端粒區域及 G-四股螺旋結構(G-quadruplex, G4),此現象經由motif分析及 GC 含量富集進一步確認。此外,lurbinectedin 亦顯示在基因啟動子(transcription start sites, TSS)有顯著結合,暗示其可能具備更廣泛的調控功能。本研究揭示 lurbinectedin 於 ALT 癌細胞中標靶端粒與 G4 結構的潛力,提供未來治療策略的新方向。
另一部分的研究著重於一種長鏈分編碼RNA,稱之為(telomeric repeat-containing RNA, TERRA),此RNA包含端粒重複序列,源自亞端粒區域,參與端粒功能及基因組穩定性的調控。然而,TERRA 表達與人類老化之間的關係仍未被充分探討。本研究應用 RNA 納米孔定序(Nanopore RNA direct sequencing)及次世代定序(Next generation sequencing ) 結合生物資訊分析(TERRA-QUANT),量化TERRA 表達量,並進一步使用 poly(A)+/non poly(A) TERRA 捕獲定序以解析染色體端特定的多腺苷酸化偏好。分析結果顯示,TERRA 在血液、腦部及纖維母細胞中隨年齡顯著增加。此外,早老症(Hutchinson-Gilford progeria syndrome, HGPS)患者的纖維母細胞則表現出異常的 TERRA 表達型態。此結果指出,TERRA 可能為老化及相關疾病的重要分子標誌。 | zh_TW |
| dc.description.abstract | Telomere maintenance mechanisms play crucial roles in cancer progression and cellular aging. While most cancers rely on telomerase to sustain telomere length, approximately 10-15% of cancers, particularly sarcomas, utilize the alternative lengthening of telomeres (ALT) pathway. ALT cancers often exhibit resistance to conventional chemotherapeutic agents, highlighting the need for alternative treatment strategies. In this study, we employed chem-seq with biotinylated lurbinectedin to investigate its genome-wide binding profile in ALT-positive cancer cells. Our results reveal that lurbinectedin preferentially binds to telomeric regions and G quadruplex (G4) structures, as confirmed by motif analysis and GC content enrichment. Furthermore, lurbinectedin exhibits notable binding at transcription start sites (TSS), suggesting broader regulatory roles. These findings reveal the mechanism by which lurbinectedin efficiently eliminates ALT cancer cells through targeting telomeres. Second part of my thesis focuses on telomeric repeat-containing RNA (TERRA), a long non-coding RNA transcribed from subtelomeric regions. TERRA serves as a key regulator of telomere function and genome stability, but its relationship to human aging remains poorly understood. To address this, we combine Nanopore RNA direct sequencing and next-generation sequencing to annotate TERRA transcription regions. We established a customized bioinformatics pipeline (TERRA-QUANT) to quantify TERRA levels. Coupling this with poly(A)+ and non poly(A) TERRA capture sequencing allowed us to uncover chromosome specific polyadenylation preferences conserved across cell types. Our analyses also demonstrated that TERRA expression significantly increases with age in blood, brain, and fibroblasts. Notably, abnormal TERRA expression patterns were detected in Hutchinson-Gilford progeria syndrome (HGPS) fibroblasts. These results suggest that TERRA may serve as a molecular marker for aging and age-associated diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:13:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:13:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV Content VI Content of figures X Content of tables XII Chapter 1 Lurbinectedin target telomeres in ALT cancer 1 INTRODUCTION…………………………..…………………...…...………………1 1 Telomeres and the Need for Maintenance Mechanisms 1 2 Alternative Lengthening of Telomeres in Cancer 2 3 Therapeutic Challenges in ALT-Positive Tumors 3 4 G-Quadruplexes, R-Loops, and Telomeric Vulnerabilities 4 5 Lurbinectedin as a GC-Rich DNA Binding Drug with ALT-Relevant Activity 5 6 Objectives of This Study 6 MATERIALS AND METHODS 7 1 Cell culture 7 2 Biotin-lurbinectedin chromatin precipitation sequencing (ChemIP-seq) 7 3 Library Preparation for Illumina Sequencing 9 4 Sequencing data analysis 10 RESULTS 12 1 Bio-lurbinectedin recognizes G-rich DNA. 12 2 Preferential accumulation at ALT telomeres. 12 3 Association with G-quadruplex loci 13 DISUCSSION 15 FIGURES AND TABLES 17 REFERENCES 23 Chapter 2 Telomeric Repeat-Containing RNA is associated with human aging 25 INTRODUCTION 25 1 Telomeres and Transcription at Chromosome Ends 25 2 TERRA Biogenesis, Structure, and Regulatory Mechanisms 25 3 Functional Roles of TERRA 26 4 Technological Challenges and Experimental Strategy 28 MATERIALS AND METHODS 29 1 Cell culture 29 2 RNA extraction 29 3 TERRA capture for Illumina RNA-seq 30 4 TERRA capture for Nanopore Direct RNA-seq 32 5 Poly(A)+ and Poly(A)− TERRA Isolation 32 6 Library Preparation for Illumina Sequencing 33 7 Nanopore Direct RNA Sequencing Library Preparation 35 8 NGS Sequencing for TERRA RT-qPCR Products 37 9 Analysis of TERRA Expression by TERRA-QUANT 38 10 cDNA Synthesis and Quantitative PCR 39 RESULTS 41 1 HeLa TERRA Profiling by Integrated Long- and Short-Read Sequencing 41 2 Validation of subtelomeric primers for chromosome-specific TERRA. 42 3 Polyadenylation profiles of TERRA across chromosome ends 43 4 TERRA Expression Increases with Human Aging 44 DISUCSSION 46 FIGURES AND TABLES 49 REFERENCES 60 Appendix 61 | - |
| dc.language.iso | en | - |
| dc.subject | 癌症 | zh_TW |
| dc.subject | 替代性端粒延長 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 端粒重複序列核醣核酸 | zh_TW |
| dc.subject | telomeric repeat-containing RNA | en |
| dc.subject | aging | en |
| dc.subject | cancer | en |
| dc.subject | alternative lengthening of telomeres | en |
| dc.title | Lurbinectedin 標靶 ALT 癌細胞中的端粒及探討TERRA與人類老化的關聯性 | zh_TW |
| dc.title | Lurbinectedin targets telomeres in ALT cancer and Telomeric Repeat-Containing RNA is associated with human aging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林敬哲;陳律佑 | zh_TW |
| dc.contributor.oralexamcommittee | JING-JER LIN;Liuh-Yow Chen | en |
| dc.subject.keyword | 替代性端粒延長,癌症,端粒重複序列核醣核酸,老化, | zh_TW |
| dc.subject.keyword | alternative lengthening of telomeres,cancer,telomeric repeat-containing RNA,aging, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202504254 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
