Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李承叡zh_TW
dc.contributor.advisorCheng-Ruei Leeen
dc.contributor.author高瑄蔚zh_TW
dc.contributor.authorHsuan-Wei Kaoen
dc.date.accessioned2025-08-20T16:13:26Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationAbid, A., Abdalla, A., Abid, A., Khan, D., Alfozan, A., and Zou, J. (2019). Gradio: Hassle-free sharing and testing of ml models in the wild. arXiv preprint arXiv:1906.02569.
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631.
Barchi, L., Rabanus‐Wallace, M.T., Prohens, J., Toppino, L., Padmarasu, S., Portis, E., Rotino, G.L., Stein, N., Lanteri, S., and Giuliano, G. (2021). Improved genome assembly and pan‐genome provide key insights into eggplant domestication and breeding. The Plant Journal 107, 579-596.
Barchi, L., Aprea, G., Rabanus‐Wallace, M.T., Toppino, L., Alonso, D., Portis, E., Lanteri, S., Gaccione, L., Omondi, E., and Van Zonneveld, M. (2023). Analysis of> 3400 worldwide eggplant accessions reveals two independent domestication events and multiple migration‐diversification routes. The Plant Journal 116, 1667-1680.
Barello, G., Charles, A.S., and Pillow, J.W. (2018). Sparse-coding variational auto-encoders. BioRxiv, 399246.
Boykov, Y.Y., and Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001 (IEEE), pp. 105-112.
Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177-1186.
Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., and Buckler, E.S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635.
Browning, B.L., Zhou, Y., and Browning, S.R. (2018). A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics 103, 338-348.
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueño, J., González-Camacho, J.M., Pérez-Elizalde, S., and Beyene, Y. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in plant science 22, 961-975.
De Los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K., and Cotes, J.M. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182, 375-385.
Flint, J., and Mackay, T.F. (2009). Genetic architecture of quantitative traits in mice, flies, and humans. Genome research 19, 723-733.
Furbank, R.T., and Tester, M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. Trends in plant science 16, 635-644.
Furini, A., and Wunder, J. (2004). Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theoretical and applied genetics 108, 197-208.
Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (JMLR Workshop and Conference Proceedings), pp. 249-256.
Goddard, M., and Hayes, B. (2007). Genomic selection. Journal of Animal breeding and Genetics 124, 323-330.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778.
Heslot, N., Yang, H.P., Sorrells, M.E., and Jannink, J.L. (2012). Genomic selection in plant breeding: a comparison of models. Crop science 52, 146-160.
Hickey, J.M., Chiurugwi, T., Mackay, I., and Powell, W. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature genetics 49, 1297-1303.
Hickey, L.T., N. Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., and Wulff, B.B. (2019). Breeding crops to feed 10 billion. Nature biotechnology 37, 744-754.
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations.
Hill, W.G. (2010). Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 73-85.
Hoerl, A.E., and Kennard, R.W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
Kapoor, L., Simkin, A.J., George Priya Doss, C., and Siva, R. (2022). Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC plant biology 22, 27.
Kingma, D.P., and Welling, M. (2013). Auto-encoding variational bayes (Banff, Canada).
Kingma, D.P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant methods 9, 1-9.
Kullback, S., and Leibler, R.A. (1951). On information and sufficiency. The annals of mathematical statistics 22, 79-86.
Lee, U., Chang, S., Putra, G.A., Kim, H., and Kim, D.H. (2018). An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PloS one 13, e0196615.
Li, D., Qian, J., Li, W., Yu, N., Gan, G., Jiang, Y., Li, W., Liang, X., Chen, R., and Mo, Y. (2021). A high‐quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Molecular ecology resources 21, 1274-1286.
Louizos, C., Welling, M., and Kingma, D.P. (2017). Learning sparse neural networks through $ L_0 $ regularization. arXiv preprint arXiv:1712.01312.
Mackay, T.F., Stone, E.A., and Ayroles, J.F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10, 565-577.
McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, J.P., and Hirschhorn, J.N. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature reviews genetics 9, 356-369.
McKinney, W. (2010). Data structures for statistical computing in Python. SciPy 445, 51-56.
Mendoza, F., Dejmek, P., and Aguilera, J.M. (2006). Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology 41, 285-295.
Meuwissen, T.H., Hayes, B.J., and Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. genetics 157, 1819-1829.
Miles, A., and Harding, N. (2016). scikit-allel: A Python package for exploring and analysing genetic variation data.
Mitchell, T.J., and Beauchamp, J.J. (1988). Bayesian variable selection in linear regression. Journal of the american statistical association 83, 1023-1032.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12, 2825-2830.
Prohens, J., Blanca, J.M., and Nuez, F. (2005). Morphological and molecular variation in a collection of eggplants from a secondary center of diversity: Implications for conservation and breeding.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., and Daly, M.J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics 81, 559-575.
Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O'Donovan, M.C., Sullivan, P.F., Sklar, P., Purcell, S.M., Stone, J.L., Sullivan, P.F., Ruderfer, D.M., McQuillin, A., Morris, D.W., O’Dushlaine, C.T., Corvin, A., Holmans, P.A., O’Donovan, M.C., Sklar, P., Wray, N.R., Macgregor, S., Sklar, P., Sullivan, P.F., O’Donovan, M.C., Visscher, P.M., Gurling, H., Blackwood, D.H.R., Corvin, A., Craddock, N.J., Gill, M., Hultman, C.M., Kirov, G.K., Lichtenstein, P., McQuillin, A., Muir, W.J., O'Donovan, M.C., Owen, M.J., Pato, C.N., Purcell, S.M., Scolnick, E.M., St Clair, D., Stone, J.L., Sullivan, P.F., Sklar, P., O'Donovan, M.C., Kirov, G.K., Craddock, N.J., Holmans, P.A., Williams, N.M., Georgieva, L., Nikolov, I., Norton, N., Williams, H., Toncheva, D., Milanova, V., Owen, M.J., Hultman, C.M., Lichtenstein, P., Thelander, E.F., Sullivan, P., Morris, D.W., O'Dushlaine, C.T., Kenny, E., Quinn, E.M., Gill, M., Corvin, A., McQuillin, A., Choudhury, K., Datta, S., Pimm, J., Thirumalai, S., Puri, V., Krasucki, R., Lawrence, J., Quested, D., Bass, N., Gurling, H., Crombie, C., Fraser, G., Leh Kuan, S., Walker, N., St Clair, D., Blackwood, D.H.R., Muir, W.J., McGhee, K.A., Pickard, B., Malloy, P., Maclean, A.W., Van Beck, M., Wray, N.R., Macgregor, S., Visscher, P.M., Pato, M.T., Medeiros, H., Middleton, F., Carvalho, C., Morley, C., Fanous, A., Conti, D., Knowles, J.A., Paz Ferreira, C., Macedo, A., Helena Azevedo, M., Pato, C.N., Stone, J.L., Ruderfer, D.M., Kirby, A.N., Ferreira, M.A.R., Daly, M.J., Purcell, S.M., Sklar, P., Purcell, S.M., Stone, J.L., Chambert, K., Ruderfer, D.M., Kuruvilla, F., Gabriel, S.B., Ardlie, K., Moran, J.L., Daly, M.J., Scolnick, E.M., Sklar, P., The International Schizophrenia, C., Manuscript, p., Data, a., subgroup, G.a., Polygene analyses, s., Management, c., Cardiff, U., Karolinska Institutet/University of North Carolina at Chapel, H., Trinity College, D., University College, L., University of, A., University of, E., Queensland Institute of Medical, R., University of Southern, C., Massachusetts General, H., Stanley Center for Psychiatric, R., Broad Institute of, M.I.T., and Harvard. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748-752.
Rockman, M.V. (2012). The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66, 1-17.
Saito, Y., Hatanaka, T., Uosaki, K., and Shigeto, K. (2003). Eggplant classification using artificial neural network. In Proceedings of the International Joint Conference on Neural Networks, 2003. (IEEE), pp. 1013-1018.
Sergouniotis, P.I., Diakite, A., Gaurav, K., Birney, E., and Fitzgerald, T. (2025). Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers. Bioinformatics 41, btae732.
Sodhi, P., Sun, H., Póczos, B., and Wettergreen, D. (2018). Robust plant phenotyping via model-based optimization. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE), pp. 7689-7696.
Stylianou, A., Pless, R., Shakoor, N., and Mockler, T. (2021). Classification and Visualization of Genotype x Phenotype Interactions in Biomass Sorghum. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1352-1361.
Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., and Archer, D. (2018). Color calibration of digital images for agriculture and other applications. ISPRS journal of photogrammetry and remote sensing 146, 221-234.
Taher, D., Solberg, S.Ø., Prohens, J., Chou, Y.-y., Rakha, M., and Wu, T.-h. (2017). World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Frontiers in plant science 8, 1484.
The MathWorks, I. (2022). Optimization Toolbox version: 9.4 (R2022b). Available at: https://www.mathworks.com
Tonolini, F., Jensen, B.S., and Murray-Smith, R. (2020). Variational sparse coding. In Uncertainty in Artificial Intelligence (PMLR), pp. 690-700.
Tzutalin. (2015). LabelImg. Available at: https://github.com/tzutalin/labelImg
Ubbens, J.R., and Stavness, I. (2017). Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Frontiers in plant science 8, 1190.
Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.
VanRaden, P.M. (2008). Efficient methods to compute genomic predictions. Journal of dairy science 91, 4414-4423.
Varshney, R.K., Graner, A., and Sorrells, M.E. (2005). Genomics-assisted breeding for crop improvement. Trends in plant science 10, 621-630.
Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., and Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics 101, 5-22.
Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J.H., Batchelor, W.D., Xiong, L., and Yan, J. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular plant 13, 187-214.
Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature genetics 44, 821-824.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98903-
dc.description.abstract本研究旨在結合植物果實影像與基因型資料,建立一套能解釋形態與遺傳關係的分析流程。為此,我們開發一個基於自編碼器架構的深度學習模型,用以自動萃取茄子(Solanum melongena)果實影像的latent representation,並進一步評估其與基因型的對應關係。模型訓練採用來自亞洲蔬菜中心共1,609張果實影像資料,透過一種稱為 Variational Sparse Coding(VSC)的方法,使所學得的特徵具備稀疏性與可解釋性。們對這些潛在特徵進行視覺化與統計分析,並將其作為性狀輸入,結合 GEMMA 工具進行全基因體關聯分析(GWAS),以鑑定與影像形態特徵相關的單核苷酸多態性(SNP)。
此外,我們比較了不同的特徵聚合方式(平均值、最大值、最小值)及其主成分分析(PCA)後的效果,探討表徵方式對後續分析結果的影響。最後,我們以多層感知器(MLP)模型,根據顯著 SNP 資訊預測影像所對應的latent representation,展示從基因型重建表型特徵的可行性與潛力。整體而言,本研究建立一套由影像特徵學習、基因型關聯分析到性狀預測的整合流程,為深入理解植物的基因型與表型關係提供一項具體而有效的技術架構。
zh_TW
dc.description.abstractThis study aims to integrate plant fruit images and genotype data to establish an analytical framework for understanding the relationship between morphological traits and genetic variation. To this end, we developed a deep learning model based on an autoencoder architecture to automatically extract latent representations from fruit images of eggplant (Solanum melongena) and assess their correspondence with genotypic information. The model was trained on 1,609 fruit images provided by the World Vegetable Center, using a method known as Variational Sparse Coding (VSC) to obtain sparse and interpretable features.
We performed visualization and statistical analysis of these latent features and treated them as phenotypic traits for genome-wide association studies (GWAS) using the GEMMA tool, identifying single nucleotide polymorphisms (SNPs) associated with image-based morphological characteristics. In addition, we compared different feature aggregation methods (mean, maximum, minimum) and their principal component analysis (PCA) results to evaluate how representation strategies affect downstream analyses. Finally, we employed a multilayer perceptron (MLP) model to predict latent representations from significant SNPs, demonstrating the feasibility and potential of reconstructing phenotypic features from genotype data.
Overall, this study establishes an integrated workflow from image-based feature learning to genotype-to-trait association and phenotype prediction, providing a practical and effective framework for understanding the genotype–phenotype relationship in plants.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:13:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:13:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
致謝 I
摘要 II
Abstract III
Contents V
List of Figures VIII
List of Tables XI
1. Introduction 1
2. Materials and Methods 6
2.1 Image Data Collection 6
2.1.1 Plant Materials 6
2.1.2 Image Acquisition and Preprocessing 7
2.2 Model Training and Latent Representation 9
2.2.1 Model Architecture, Implementation and Augmentation 9
2.2.2 Grid Search of Latent Parameters 12
2.2.3 Full Model Training and Latent Code Extraction 13
2.2.4 Latent Code Extraction and Visual Evaluation of Reconstruction Quality 14
2.2.5 Latent Feature Extraction and Visualization 15
2.3 Genomic Data Processing and Trait Preparation 16
2.3.1 Genomic data source and filtering 16
2.3.2 Genomic PCA and population structure 17
2.3.3 Latent code extraction and PCA-based traits 17
2.4 Genome-Wide Association Analysis and Trait Reconstruction 18
2.4.1 GWAS Analysis 18
2.4.2 Trait–Genotype Association Pre-screening and Polygenicity Evaluation 19
2.4.3 Reconstructing Phenotypes from Genotype-Trait Associations 21
2.5 Genomic Prediction of Latent Traits 22
2.5.1 Genotype Data Processing for Prediction 22
2.5.2 MLP Model Architecture and Training 23
2.6 User Interface for Trait Query and Image Reconstruction 24
3. Results 25
3.1 Dataset Overview 25
3.2 Image Quality and Standardization 25
3.3 Model Design and Reconstruction Ability 26
3.4 Model Optimization 26
3.5 Reconstruction Benchmark and Visual Evaluation 28
3.6 Latent Representations Interpretation 29
3.7 Trait–Genotype Association and Visualization 31
3.8 Trait Polygenicity and Genotype Association Patterns 33
3.9 Image-Based Reconstruction of SNP Effects 34
3.10 Genotype-Wise Trait Visualization via Box Plots 35
3.11 Genomic Prediction Performance Using MLP 37
4. Discussion 40
4.1 Image Data Quality Limitations 40
4.2 Interpretable and Disentangled Latent Representations 40
4.3 Trait Polygenicity and Genomic Associations 42
4.4 Visualizing the Effects of Genomic Variation 44
4.5 Trait Prediction from Genotype Using Neural Models 45
5. Conclusion 47
6. References 112
List of Figures
Figure 1. Workflow of image preprocessing for eggplant morphological analysis. 50
Figure 2. Architecture of the variational sparse coding (VSC) model. 51
Figure 3. Reconstruction loss curves of the final VSC models trained using linear and log₂ resize strategies. 52
Figure 4. Visual evaluation of reconstruction and generation performance using VSC models.. 54
Figure 5. Morphological effects of individual latent dimensions on synthetic image reconstruction. 58
Figure 6. GWAS results based on linearly resized morphological features of eggplant fruit. 59
Figure 7. Prediction performance of ridge regression across traits using increasing numbers of SNPs. 60
Figure 8. Predicted eggplant morphologies based on SNP genotypes using two latent trait reconstruction strategies. 66
Figure 9. Boxplots of trait values and representative images for each genotype group. 75
Figure 10. Performance of MLP model in predicting latent traits from genotype data. 77
Figure 11. Correlation between SNP-based heritability (PVE) and prediction accuracy across latent representations. 78
Supplementary Figure 1. Geographic distribution of Solanum melongena accessions used in this study. 79
Supplementary Figure 2. Distribution of eggplant image sizes before and after resizing. 80
Supplementary Figure 3. Hyperparameter tuning results under the linear resize setting. 81
Supplementary Figure 4. Hyperparameter tuning results under the log₂ resize setting. 83
Supplementary Figure 5. Visualization of latent space structure in VSC models trained with linear and log₂ resizing. 86
Supplementary Figure 6. Pairwise scatter plots of latent codes and principal components. 91
Supplementary Figure 7. Genomic PCA and genotype distribution of representative GWAS SNPs. 92
Supplementary Figure 8. GWAS results based on log2 resized morphological features of eggplant fruit. 97
Supplementary Figure 9. GWAS results using side length traits derived from linearly resized eggplant images. 98
Supplementary Figure 10. GWAS results using side length traits derived from log2 resized eggplant images. 99
Supplementary Figure 11. Comparison of three polygenic scoring methods using different numbers of top SNPs. 103
Supplementary Figure 12. Prediction performance of the MLP model across latent representations.. 104
List of Tables
Supplemental Table 1. Detailed model architecture with mapping to the schematic in Figure 2. 105
Supplemental Table 2. Number of Solanum melongena accessions collected per country. 106
Supplemental Table 3. GWAS summary for image-derived traits from linearly resized eggplant images 107
Supplemental Table 4. GWAS summary for image-derived traits from log2 resized eggplant images. 108
Supplemental Table 5. GWAS summary for side length traits from linearly resized eggplant images. 110
Supplemental Table 6. GWAS summary for side length traits from log2 resized eggplant images. 111
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject茄子zh_TW
dc.subjectVariational Sparse Codingzh_TW
dc.subject植物表型zh_TW
dc.subject全基因體關聯分析zh_TW
dc.subjectGWASen
dc.subjectPlant Phenotypingen
dc.subjectVariational Sparse Codingen
dc.subjectDeep Learningen
dc.subjectEggplanten
dc.title以神經網路資訊解析茄子基因型與果實形態特徵間的關聯zh_TW
dc.titleUnveiling the Relationships between Genotype and Fruit Morphology in Eggplant via Latent Representations of Neural Networksen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林耀正;劉力瑜;林士勛zh_TW
dc.contributor.oralexamcommitteeYao-Cheng Lin;Li-yu Daisy Liu;Shih-Syun Linen
dc.subject.keyword茄子,深度學習,全基因體關聯分析,植物表型,Variational Sparse Coding,zh_TW
dc.subject.keywordEggplant,Deep Learning,GWAS,Plant Phenotyping,Variational Sparse Coding,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202503987-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept植物科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
51.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved