Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志zh_TW
dc.contributor.advisorShinn-Chih Wuen
dc.contributor.author陳佳慧zh_TW
dc.contributor.authorJia-Huei Chenen
dc.date.accessioned2025-08-20T16:12:56Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationAbdel-Misih, S. R., and M. Bloomston. 2010. Liver anatomy. Surg. Clin. North. Am. 90(4):643-653. doi: 10.1016/j.suc.2010.04.017
Ahmed, N. E.-M. B., M. Murakami, S. Kaneko, and M. Nakashima. 2016. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Sci. Rep. 6(1):35476. doi: 10.1038/srep35476
Amansyah, F., B. Budu, M. H. Achmad, N. Daud, A. Putra, M. N. Massi, A. Bukhari, M. Hardjo, L. Parewangi, and I. Patellongi. 2024. Secretome of hypoxia-preconditioned mesenchymal stem cells promotes liver regeneration and anti-fibrotic effect in liver fibrosis animal model. Pak. J. Biol. Sci. 27(1):18-26. doi: 10.3923/pjbs.2024.18.26
Anderson, T. N., and A. Zarrinpar. 2018. Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential. J. Surg. Res. 226:48-55. doi: https://doi.org/10.1016/j.jss.2018.01.031
Antebi, B., L. A. Rodriguez, K. P. Walker, A. M. Asher, R. M. Kamucheka, L. Alvarado, A. Mohammadipoor, and L. C. Cancio. 2018. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res. Ther. 9(1):265. doi: 10.1186/s13287-018-1007-x
Auzinger, G., and J. Wendon. 2008. Intensive care management of acute liver failure. Current Opinion in Critical Care 14(2):179-188. doi: 10.1097/MCC.0b013e3282f6a450
Bantel, H., and K. Schulze-Osthoff. 2012. Mechanisms of cell death in acute liver failure. Front Physiol 3:79. doi: 10.3389/fphys.2012.00079
Bartoszewski, R., A. Moszyńska, M. Serocki, A. Cabaj, A. Polten, R. Ochocka, L. Dell'Italia, S. Bartoszewska, J. Króliczewski, M. Dąbrowski, and J. F. Collawn. 2019. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB. J. 33(7):7929-7941. doi: 10.1096/fj.201802650RR
Bazira, P. J. 2023. Anatomy of the liver. Surgery (Oxf). 41(6):313-318. doi: https://doi.org/10.1016/j.mpsur.2023.02.024
Bernal, W., W. M. Lee, J. Wendon, F. S. Larsen, and R. Williams. 2015. Acute liver failure: A curable disease. J. Hepatol. 62(1, Supplement):S112-S120. doi: https://doi.org/10.1016/j.jhep.2014.12.016
Borgström L Fau - Kågedal, B., O. Kågedal B Fau - Paulsen, and O. Paulsen. 1986. Pharmacokinetics of N-acetylcysteine in man. Eur. J. Clin. Pharmacol. 31(2):217-222. doi: 10.1007/BF00606662 (0031-6970)
Bossolasco, P., T. Montemurro, L. Cova, S. Zangrossi, C. Calzarossa, S. Buiatiotis, D. Soligo, S. Bosari, V. Silani, G. L. Deliliers, P. Rebulla, and L. Lazzari. 2006. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res. 16(4):329-336. doi: 10.1038/sj.cr.7310043
Brahimi-Horn, M. C., and J. Pouysségur. 2007. Oxygen, a source of life and stress. FEBS Lett. 581(19):3582-3591. doi: https://doi.org/10.1016/j.febslet.2007.06.018
Cananzi, M., and P. De Coppi. 2012. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis. 8(3):77-88. doi: 10.4161/org.22426
Casciaro, F., M. Borghesan, F. Beretti, M. Zavatti, E. Bertucci, M. Y. Follo, T. Maraldi, and M. Demaria. 2020. Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mech. Ageing Dev. 191:111328. doi: https://doi.org/10.1016/j.mad.2020.111328
Chacko, S. M., S. Ahmed, K. Selvendiran, M. L. Kuppusamy, M. Khan, and P. Kuppusamy. 2010. Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am. J. Physiol. Cell Physiol. 299(6):C1562-1570. doi: 10.1152/ajpcell.00221.2010
De Coppi, P., G. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25(1):100-106. doi: 10.1038/nbt1274
Devarbhavi, H., S. K. Asrani, J. P. Arab, Y. A. Nartey, E. Pose, and P. S. Kamath. 2023. Global burden of liver disease: 2023 update. J. Hepatol. 79(2):516-537. doi: 10.1016/j.jhep.2023.03.017
Epstein, A. C., J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O'Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson, A. Dhanda, Y. M. Tian, N. Masson, D. L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P. H. Maxwell, C. W. Pugh, C. J. Schofield, and P. J. Ratcliffe. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43-54. doi: 10.1016/s0092-8674(01)00507-4
Erker, L., and M. Grompe. 2008. Signaling networks in hepatic oval cell activation. Stem Cell Res. 1(2):90-102. doi: https://doi.org/10.1016/j.scr.2008.01.002
Esteller, A. 2008. Physiology of bile secretion. World J Gastroenterol. 14(37):5641-5649. doi: 10.3748/wjg.14.5641
Fan, G., L. Wen, M. Li, C. Li, B. Luo, F. Wang, L. Zhou, and L. Liu. 2011. Isolation of mouse mesenchymal stem cells with normal ploidy from bone marrows by reducing oxidative stress in combination with extracellular matrix. BMC Cell Biol. 12(1):30. doi: 10.1186/1471-2121-12-30
Fehrer, C., R. Brunauer, G. Laschober, H. Unterluggauer, S. Reitinger, F. Kloss, C. Gülly, R. Gassner, and G. Lepperdinger. 2007. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6(6):745-757. doi: 10.1111/j.1474-9726.2007.00336.x
Fischer, B., and B. D. Bavister. 1993. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99(2):673-679. doi: 10.1530/jrf.0.0990673
Forristal, C. E., K. L. Wright, N. A. Hanley, R. O. C. Oreffo, and F. D. Houghton. 2010. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reprod. 139(1):85-97. doi: 10.1530/REP-09-0300
Furuya, S., H. Kono, M. Hara, K. Hirayama, C. Sun, and H. Fujii. 2015. Interleukin 17A plays a role in lipopolysaccharide-galactosamine induced fulminant hepatic injury in mice. J. Surg. Res. 199(2):487-493. doi: 10.1016/j.jss.2015.05.060
Fyfe, B., F. Zaldana, and C. Liu. 2018. The Pathology of Acute Liver Failure. Clin. Liver Dis. 22(2):257-268. doi: https://doi.org/10.1016/j.cld.2018.01.003
Ganger, D. R., J. Rule, J. Rakela, N. Bass, A. Reuben, R. T. Stravitz, N. Sussman, A. M. Larson, L. James, C. Chiu, W. M. Lee, and f. t. A. L. F. S. Group. 2018. Acute liver failure of indeterminate etiology: a comprehensive systematic approach by an expert committee to establish causality. Am. J. Gastroenterol. 113(9):1319. doi: 10.1038/s41395-018-0160-2
Gholizadeh-Ghaleh Aziz, S., F. Ezzatollah, R.-Y. Mohammad, A. Abolfazl, F. Zahra, and M. and Pashaiasl. 2017. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif. Cells Nanomed. Biotechnol. 45(4):765-774. doi: 10.1080/21691401.2016.1216857
Gosden, C. M. 1983. Amniotic fluid cell types and culture. Br. Med. Bull. 39(4):348-354. doi: 10.1093/oxfordjournals.bmb.a071847
Greer, S. N., J. L. Metcalf, Y. Wang, and M. Ohh. 2012. The updated biology of hypoxia‐inducible factor. EMBO J. 31(11):2448-2460. doi: https://doi.org/10.1038/emboj.2012.125
Guglielmi, A., A. Ruzzenente, S. Conci, A. Valdegamberi, and C. Iacono. 2012. How much remnant is enough in liver resection. Dig. Surg. 29(1):6-17. doi: 10.1159/000335713
Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell. Res. 37:614-636. doi: 10.1016/0014-4827(65)90211-9
Hefler, J., B. A. Marfil-Garza, R. L. Pawlick, D. H. Freed, C. J. Karvellas, D. L. Bigam, and A. M. J. Shapiro. 2021. Preclinical models of acute liver failure: a comprehensive review. PeerJ. 9:e12579. doi: 10.7717/peerj.12579
Hines, O. J. 2010. Schwartz's Principles of Surgery, 9ed. Ann. Surg. 251(4):772. doi: 10.1097/SLA.0b013e3181d56ad3
Ho, C. M., C. H. Lee, J. Y. Wang, P. H. Lee, H. S. Lai, and R. H. Hu. 2014. Nationwide longitudinal analysis of acute liver failure in taiwan. Med. (Baltimore) 93(4):e35. doi: 10.1097/md.0000000000000035
Hoehn, H., and D. Salk. 1982. Mmorphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Mol. Biol. doi:10.1016/s0091-679x(08)61362-x
Hu, C., Y. He, D. Liu, L. Zhao, S. Fang, B. Tan, S. Dong, Y. Wang, T. He, and Y. Bi. 2021. Hypoxia preconditioning promotes the proliferation and migration of human urine-derived stem cells in chronically injured liver of mice by upregulating CXCR4. Stem Cells Dev. 30(10):526-536. doi: 10.1089/scd.2021.0008
Hung, S. C., R. R. Pochampally, S. C. Hsu, C. Sanchez, S. C. Chen, J. Spees, and D. J. Prockop. 2007. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2(5):e416. doi: 10.1371/journal.pone.0000416
Hung, S. P., J. H. Ho, Y. R. Shih, T. Lo, and O. K. Lee. 2012. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J. Orthop. Res. 30(2):260-266. doi: 10.1002/jor.21517
Ishiuchi, N., A. Nakashima, S. Doi, K. Yoshida, S. Maeda, R. Kanai, Y. Yamada, T. Ike, T. Doi, Y. Kato, and T. Masaki. 2020. Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Res. Ther. 11(1):130. doi: 10.1186/s13287-020-01642-6
Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. Kaelin Jr. 2001. HIFα Targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Sci. 292(5516):464-468. doi: 10.1126/science.1059817
Jaakkola, P., D. R. Mole, Y.-M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. v. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, and P. J. Ratcliffe. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Sci. 292(5516):468-472. doi: 10.1126/science.1059796
Jaśkiewicz, M., A. Moszyńska, J. Króliczewski, A. Cabaj, S. Bartoszewska, A. Charzyńska, M. Gebert, M. Dąbrowski, J. F. Collawn, and R. Bartoszewski. 2022. The transition from HIF-1 to HIF-2 during prolonged hypoxia results from reactivation of PHDs and HIF1A mRNA instability. Cell. Mol. Biol. Lett. 27(1):109. doi: 10.1186/s11658-022-00408-7
Jochum, C., I. Gieseler Rk Fau - Gawlista, A. Gawlista I Fau - Fiedler, P. Fiedler A Fau - Manka, F. H. Manka P Fau - Saner, M. Saner Fh Fau - Roggendorf, G. Roggendorf M Fau - Gerken, A. Gerken G Fau - Canbay, and A. Canbay. 2009. Hepatitis B-associated acute liver failure: immediate treatment with entecavir inhibits hepatitis B virus replication and potentially its sequelae. Digestion. 80(4), 235–240. doi: https://doi.org/10.1159/000236009
Jun, E. K., Q. Zhang, B. S. Yoon, J. H. Moon, G. Lee, G. Park, P. J. Kang, J. H. Lee, A. Kim, and S. You. 2014. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int. J. Mol. Sci. 15(1):605-628. doi: 10.3390/ijms15010605
Kabon, B., A. Nagele, D. Reddy, C. Eagon, J. W. Fleshman, D. I. Sessler, and A. Kurz. 2004. Obesity decreases perioperative tissue oxygenation. Anesthesiol. 100(2):274-280. doi: 10.1097/00000542-200402000-00015
Kamura, T., S. Sato, K. Iwai, M. Czyzyk-Krzeska, R. C. Conaway, and J. W. Conaway. 2000. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA. 97(19):10430-10435. doi: 10.1073/pnas.190332597
Karvellas, C. J., J. Cavazos, H. Battenhouse, V. Durkalski, J. Balko, C. Sanders, and W. M. Lee. 2014. Effects of antimicrobial prophylaxis and blood stream infections in patients with acute liver failure: a retrospective cohort study. Clin. Gastroenterol. Hepatol. 12(11):1942-1949.e1941. doi: https://doi.org/10.1016/j.cgh.2014.03.011

Ko, I.-G., J.-J. Jin, L. Hwang, S.-H. Kim, C.-J. Kim, J. H. Han, S. Lee, H. I. Kim, H. P. Shin, and J. W. Jeon. 2020. Polydeoxyribonucleotide exerts protective effect against CCl4-induced acute liver injury through inactivation of NF-κB/MAPK signaling pathway in mice. Int. J. Mol. Sci. 21(21):7894. doi: https://doi.org/10.3390/ijms21217894
Kruepunga, N., T. B. M. Hakvoort, J. P. J. M. Hikspoors, S. E. Köhler, and W. H. Lamers. 2019. Anatomy of rodent and human livers: what are the differences? Biochim. Biophys. Acta. Mol. Basis Dis. 1865(5):869-878. doi: https://doi.org/10.1016/j.bbadis.2018.05.019
Kuo, T. K., S. P. Hung, C. H. Chuang, C. T. Chen, Y. R. V. Shih, S. C. Y. Fang, V. W. Yang, and O. K. Lee. 2008. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterol. 134(7):2111-2121.e2113. doi: https://doi.org/10.1053/j.gastro.2008.03.015
Kwo, P. Y., and C. S. Strahotin. 2011. Practical hepatic pathology: a diagnostic approach : Second Edition. In: R. Saxena, editor. W.B. Saunders, Saint Louis. 63-72.
Lee, J. H., Y. M. Yoon, and S. H. Lee. 2017. Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt axis. Int. J. Mol. Sci. 18(6):1320.
Lemmer, P., J.-P. Sowa, Y. Bulut, P. Strnad, and A. Canbay. 2025. Mechanisms and aetiology-dependent treatment of acute liver failure. Liver Int. 45(3):e15739. doi: https://doi.org/10.1111/liv.15739
Leon, L. A., R. S. Marchevsky, A. M. Gaspar, C. Garcia Rde, A. J. Almeida, M. Pelajo-Machado, T. X. Castro, J. P. Nascimento, K. E. Brown, and M. A. Pinto. 2016. Cynomolgus monkeys (macaca fascicularis) experimentally infected with B19V and hepatitis A virus: no evidence of the co-infection as a cause of acute liver failure. Mem. Inst. Oswaldo. Cruz. 111(4):258-266. doi: 10.1590/0074-02760160013
Li, S., J. Wang, B. Jiang, J. Jiang, L. Luo, B. Zheng, and W. Si. 2022. Mesenchymal stem cells derived from different perinatal tissues donated by same donors manifest variant performance on the acute liver failure model in mouse. Stem Cell Res. Ther. 13(1):231. doi: 10.1186/s13287-022-02909-w
Liao, H., S. Du, T. Jiang, M. Zheng, Z. Xiang, and J. Yang. 2021. UMSCs Attenuate LPS/D-GalN-induced acute liver failure in mice by down-regulating the MyD88/NF-κB pathway. J. Clin. Transl. Hepatol. 9(5):690-701. doi: 10.14218/jcth.2020.00157
Lin, Q., X. Cong, and Z. Yun. 2011. Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha. Mol. Cancer Res. 9(6):757-765. doi: 10.1158/1541-7786.Mcr-11-0053
Liu, W., L. Li, Y. Rong, D. Qian, J. Chen, Z. Zhou, Y. Luo, D. Jiang, L. Cheng, S. Zhao, F. Kong, J. Wang, Z. Zhou, T. Xu, F. Gong, Y. Huang, C. Gu, X. Zhao, J. Bai, F. Wang, W. Zhao, L. Zhang, X. Li, G. Yin, J. Fan, and W. Cai. 2020. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 103:196-212. doi: https://doi.org/10.1016/j.actbio.2019.12.020
Lloyd-Griffith, C., G. P. Duffy, and F. J. O'Brien. 2015. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells. J. Anat. 227(6):767-780. doi: https://doi.org/10.1111/joa.12283
Loukogeorgakis, S. P., and P. De Coppi. 2017. Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells. 35(7):1663-1673. doi: 10.1002/stem.2553
Malekzadeh, R., M. J. Nasseri-Moghaddam S Fau - Kaviani, H. Kaviani Mj Fau - Taheri, N. Taheri H Fau - Kamalian, M. Kamalian N Fau - Sotoudeh, and M. Sotoudeh. 2001. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Dig. Dis. Sci. 46(6), 1321–1327. https://doi.org/10.1023/a:1010683817344
Manka, P., J. Verheyen, G. Gerken, and A. Canbay. 2016. Liver failure due to acute viral hepatitis (A-E). Visc. Med. 32(2):80-85. doi: 10.1159/000444915
Manns, M. P., J. D. Czaja Aj Fau - Gorham, E. L. Gorham Jd Fau - Krawitt, G. Krawitt El Fau - Mieli-Vergani, D. Mieli-Vergani G Fau - Vergani, J. M. Vergani D Fau - Vierling, and J. M. Vierling. 2010. Diagnosis and management of autoimmune hepatitis. Br. Med. J. (Clin. Res. Ed.). 380, e070201. doi: 10.1136/bmj-2022-070201
Maxwell, P. H., M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nat. 399(6733):271-275. doi: 10.1038/20459
Michalopoulos, G. K. 2007. Liver regeneration. J. Cell Physiol. 213(2):286-300. doi: 10.1002/jcp.21172
Mirmalek-Sani, S.-H., D. C. Sullivan, C. Zimmerman, T. D. Shupe, and B. E. Petersen. 2013. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am. J. Pathol. 183(2):558-565. doi: https://doi.org/10.1016/j.ajpath.2013.05.002
Mohyeldin, A., T. Garzón-Muvdi, and A. Quiñones-Hinojosa. 2010. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 7(2):150-161. doi: https://doi.org/10.1016/j.stem.2010.07.007
Morrison, S. J., and J. Kimble. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nat. 441(7097):1068-1074. doi: 10.1038/nature04956
Muscari, C., E. Giordano, F. Bonafè, M. Govoni, A. Pasini, and C. Guarnieri. 2013. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J. Biomed. Sci. 20(1):63. doi: 10.1186/1423-0127-20-63
Nadia, S., P. Alessia, P. Marina, B. Federica, M. Massimo, R. Valentina, L. Mario, K. Annalisa, F. Guido, B. Franca Dagna, U. Antonio, and F. Francesco. 2008. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 93(3):339-346. doi: 10.3324/haematol.11869
Nakadate, K., H. Saitoh, M. Sakaguchi, F. Miruno, N. Muramatsu, N. Ito, K. Tadokoro, and K. Kawakami. 2025. Advances in understanding lipopolysaccharide-mediated hepatitis: mechanisms and pathological features. Curr. Issues Mol. Biol. 47(2). doi: 10.3390/cimb47020079
Oh, R. C., T. R. Hustead, S. M. Ali, and M. W. Pantsari. 2017. Mildly elevated liver transaminase levels: causes and evaluation. Am. Fam. Physician. 96(11):709-715. PMID: 29431403.
Pagano, D., F. di Francesco, G. J. Echeverri, M. de Martino, C. Ricotta, G. Occhipinti, V. Pagano, E. Oliva, M. I. Minervini, B. G. Gridelli, and M. Spada. 2012. Development of a standardized model for liver failure in pigs: anatomopathophysiologic findings after extended liver resection. Transplant. Proc. 44(7):2029-2032. doi: 10.1016/j.transproceed.2012.06.009
Pandey, C. K., S. T. Karna, V. K. Pandey, and M. Tandon. 2015. Acute liver failure in pregnancy: Challenges and management. Indian J. Anaesth. 59(3):144-149. doi: 10.4103/0019-5049.153035
Pederiva, F., M. Ghionzoli, A. Pierro, P. De Coppi, and J. A. Tovar. 2013. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant. 22(9):1683-1694. doi: 10.3727/096368912x657756
Peng, S. Y., C. J. Chou, P. J. Cheng, I. C. Ko, Y. J. Kao, Y. H. Chen, W. T. Cheng, S. W. Shaw, and S. C. Wu. 2014. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J. Obstet. Gynecol. 53(2):151-157. doi: 10.1016/j.tjog.2014.04.005
Perin, L., S. Sedrakyan, S. Giuliani, S. Da Sacco, G. Carraro, L. Shiri, K. V. Lemley, M. Rosol, S. Wu, A. Atala, D. Warburton, and R. E. De Filippo. 2010. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2):e9357. doi: 10.1371/journal.pone.0009357
Pezzi, A., B. Amorin, Á. Laureano, V. Valim, A. Dahmer, B. Zambonato, F. Sehn, I. Wilke, L. Bruschi, M. Silva, E. Filippi-Chiela, and L. Silla. 2017. Effects of hypoxia in long-term in vitro expansion of human bone marrow derived mesenchymal stem cells. J. Cell Biochem. 118(10):3072-3079. doi: 10.1002/jcb.25953
Pinsky, M. R. 2015. Functional hemodynamic monitoring. Crit. Care Clin. 31(1):89-111. doi: 10.1016/j.ccc.2014.08.005
Pipino, C., L. Pierdomenico, P. Di Tomo, F. Di Giuseppe, E. Cianci, I. D'Alimonte, C. Morabito, L. Centurione, I. Antonucci, M. A. Mariggiò, R. Di Pietro, R. Ciccarelli, M. Marchisio, M. Romano, S. Angelucci, and A. Pandolfi. 2015. Molecular and phenotypic characterization of human amniotic fluid-derived cells: a morphological and proteomic approach. Stem Cells Dev. 24(12):1415-1428. doi: 10.1089/scd.2014.0453
Prins, M., C. J. Schellens, M. W. van Leeuwen, J. Rothuizen, and E. Teske. 2010. Coagulation disorders in dogs with hepatic disease. Vet. J. 185(2):163-168. doi: 10.1016/j.tvjl.2009.05.009
Rogers, A. B., and R. Z. Dintzis. 2018. Hepatobiliary System. In: P. M. Treuting, S. M. Dintzis and K. S. Montine, editors, Comparative anatomy and histology, Second Edition. Academic Press, San Diego. 229-239.
Rolando, N., F. Harvey, J. Brahm, J. Philpott-Howard, G. Alexander, A. Gimson, M. Casewell, E. Fagan, and R. Williams. 1990. Prospective study of bacterial infection in acute liver failure: an analysis of fifty patients. Hepatol. 11(1):49-53. doi: 10.1002/hep.1840110110
Rovegno, M., M. Vera, A. Ruiz, and C. Benítez. 2019. Current concepts in acute liver failure. Ann. Hepatol. 18(4):543-552. doi: https://doi.org/10.1016/j.aohep.2019.04.008
Ruggeri, L., M. Capanni, M. F. Martelli, and A. Velardi. 2001. Cellular therapy: exploiting NK cell alloreactivity in transplantation. Curr. Opin. Hematol. 8(6):355-359. doi: 10.1097/00062752-200111000-00007
Ryan, J. M., F. P. Barry, J. M. Murphy, and B. P. Mahon. 2005. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm (Lond). 2:8. doi: 10.1186/1476-9255-2-8
Samal, J. R. K., V. K. Rangasami, S. Samanta, O. P. Varghese, and O. P. Oommen. 2021. Discrepancies on the role of oxygen gradient and culture condition on mesenchymal stem cell fate. Adv. Healthc. Mater. 10(6):2002058. doi: https://doi.org/10.1002/adhm.202002058
Schlegel, C., K. Liu, B. Spring, S. Dietz, C. F. Poets, H. Hudalla, T. Lajqi, N. Köstlin-Gille, and C. Gille. 2023. Decreased expression of hypoxia-inducible factor 1α (HIF-1α) in cord blood monocytes under anoxia. Pediatr. Res. 93(4):870-877. doi: 10.1038/s41390-022-02193-7
Shi, G., and Y. Jin. 2010. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 1(5):39. doi: 10.1186/scrt39
Soukup, J., T. Česák, H. Hornychová, K. Michalová, Ľ. Michnová, D. Netuka, J. Čáp, and F. Gabalec. 2020. Stem cell transcription factor Sox2 is expressed in a subset of folliculo-stellate cells of growth hormone-producing pituitary neuroendocrine tumours and its expression shows no association with tumour size or IGF1 levels: a clinicopathological study of 109 cases. Endocr. Pathol. 31(4):337-347. doi: 10.1007/s12022-020-09634-1
Stravitz, R. T., and D. J. Kramer. 2009. Management of acute liver failure. Nat. Rev. Gastroenterol. Hepatol. 6(9):542-553. doi: 10.1038/nrgastro.2009.127
Tao, Y., Y. Wang, M. Wang, H. Tang, and E. Chen. 2024. Mesenchymal stem cells alleviate acute liver failure through regulating hepatocyte apoptosis and macrophage polarization. J. Clin. Transl. Hepatol. 12(6):571-580. doi: 10.14218/jcth.2023.00557
Tong, X. L., L. Wang, T. B. Gao, Y. G. Qin, Y. Q. Qi, and Y. P. Xu. 2009. Potential function of amniotic fluid in fetal development---novel insights by comparing the composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J. Chin. Med. Assoc. 72(7):368-373. doi: 10.1016/s1726-4901(09)70389-2
Torres-Cuevas, I., A. Parra-Llorca, A. Sánchez-Illana, A. Nuñez-Ramiro, J. Kuligowski, C. Cháfer-Pericás, M. Cernada, J. Escobar, and M. Vento. 2017. Oxygen and oxidative stress in the perinatal period. Redox. Biol. 12:674-681. doi: 10.1016/j.redox.2017.03.011
Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant. 75(3):389-397. doi: 10.1097/01.Tp.0000045055.63901.A9
Uchida, T., F. Rossignol, M. A. Matthay, R. Mounier, S. Couette, E. Clottes, and C. Clerici. 2004. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α. J. Biol. Chem. 279(15):14871-14878. doi: https://doi.org/10.1074/jbc.M400461200
Van Thiel, D. H., P. Wright H Fau - Carroll, K. Carroll P Fau - Abu-Elmagd, H. Abu-Elmagd K Fau - Rodriguez-Rilo, J. Rodriguez-Rilo H Fau - McMichael, W. McMichael J Fau - Irish, T. E. Irish W Fau - Starzl, and T. E. Starzl. 1995. Tacrolimus: a potential new treatment for autoimmune chronic active hepatitis: results of an open-label preliminary trial. Am. J. Gastroenterol. 90(5):771-776.
Wang, Q., Y. Li, H. Yuan, L. Peng, Z. Dai, Y. Sun, R. Liu, W. Li, J. Li, and C. Zhu. 2024. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure. Tissue Cell. 87:102326. doi: https://doi.org/10.1016/j.tice.2024.102326
Wang, Y.-H., D.-B. Wu, B. Chen, E.-Q. Chen, and H. Tang. 2018. Progress in mesenchymal stem cell–based therapy for acute liver failure. Stem Cell Res. Ther. 9(1):227. doi: 10.1186/s13287-018-0972-4
Wu, H.-H., and O. K. Lee. 2017. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 8(1):117. doi: 10.1186/s13287-017-0560-z
Xue, H., L. Huang, J. Tu, L. Ding, and W. Huang. 2021. Bile acids and metabolic surgery. Liver Res. 5(3):164-170. doi: https://doi.org/10.1016/j.livres.2021.05.001
Yamamoto, Y., M. Fujita, Y. Tanaka, I. Kojima, Y. Kanatani, M. Ishihara, and S. Tachibana. 2013. Low oxygen tension enhances proliferation and maintains stemness of adipose tissue–derived stromal cells. BioResearch. OA. 2(3):199-205. doi: 10.1089/biores.2013.0004
Yang, Y.-H. K., C. R. Ogando, C. Wang See, T.-Y. Chang, and G. A. Barabino. 2018. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res. Ther. 9(1):131. doi: 10.1186/s13287-018-0876-3
Yang, Y., E. H. Lee, and Z. Yang. 2021. Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application. Tissue engineering. Part B, Reviews 28(5):966-977. doi: 10.1089/ten.teb.2021.0145
Yew, T. L., T. F. Huang, H. L. Ma, Y. T. Hsu, C. C. Tsai, C. C. Chiang, W. M. Chen, and S. C. Hung. 2012. Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model. J. Orthop. Res. 30(8):1213-1220. doi: 10.1002/jor.22070
You, Q., X. Tong, Y. Guan, D. Zhang, M. Huang, Y. Zhang, and J. Zheng. 2009. The biological characteristics of human third trimester amniotic fluid stem cells. J. Int. Med. Res. 37(1):105-112. doi: 10.1177/147323000903700112
Yu, J., S. Yin, W. Zhang, F. Gao, Y. Liu, Z. Chen, M. Zhang, J. He, and S. Zheng. 2013. Hypoxia preconditioned bone marrow mesenchymal stem cells promote liver regeneration in a rat massive hepatectomy model. Stem Cell Res. Ther. 4(4):83. doi: 10.1186/scrt234
Yuan, S., T. Jiang, L. Sun, R. Zheng, N. Ahat, and Y. Zhang. 2013. The role of bone marrow mesenchymal stem cells in the treatment of acute liver failure. Biomed. Res. Int. 2013:251846. doi: 10.1155/2013/251846
Zheng, S., J. Yang, J. Yang, Y. Tang, Q. Shao, L. Guo, and Q. Liu. 2015. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. Int. J. Clin. Exp. Pathol. 8(12):15854-15862.
Zheng, Y. B., X. H. Zhang, Z. L. Huang, C. S. Lin, J. Lai, Y. R. Gu, B. L. Lin, D. Y. Xie, S. B. Xie, L. Peng, and Z. L. Gao. 2012. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 7(7):e41392. doi: 10.1371/journal.pone.0041392
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98901-
dc.description.abstract急性肝炎由病毒、藥物或毒物引起,將導致急性肝衰竭 (acute liver failure, ALF)。幹細胞具臨床治療潛力,而體外擴增是臨床應用幹細胞的必要步驟,然而在培養過程中幹細胞時常會喪失其幹性、增殖停滯與老化等。過去研究指出,低氧氣 (hypoxia, H) 處理細胞有助於維持幹細胞性能,但不同氧氣處理幹細胞的策略及其對小鼠ALF治療之效果仍須進一步釐清。
試驗一為探討不同氧氣處理策略之小鼠羊水幹細胞 (mouse amniotic fluid stem cells, mAFSCs ) 對其增殖和幹性 (stemness) 的影響,進一步探討細胞在體外培養過程中,前期所處氧氣濃度是否對其性狀造成長期影響,並判斷細胞性狀改善是否單純源自氧氣條件的轉換。mAFSCs 分為四組培養,分別為1.NN:全程常氧培養、2. NH:常氧培養至第四代移至低氧、3. HN:低氧培養至第四代移至常氧、4. HH:全程低氧培養。使用第十代mAFSCs進行試驗。常氧條件為21% O2,低氧條件為5% O2。流式細胞儀分析顯示,所分離之 mAFSCs 表面抗原Sca-1、CD90、CD29 與 MHCI 為高表現,CD34與MHCII為低表現, CD117 (c-kit) 則占比約1%。三系分化試驗中,mAFSCs可在體外誘導分化為硬骨、脂肪和軟骨細胞,以上結果證明成功建立 mAFSCs 細胞系。形態觀察顯示,NN與HN組細胞多呈扁平狀,而 NH 與 HH 組則呈紡錘狀。細胞增殖能力評估顯示,第六日時 HH 組顯著高於其餘組別;第八日則以 NH 表現最佳,其次為 HH 組別。幹性基因表現方面,NH組之Oct-4、Sox-2 表現量顯著高於其他組別。試驗二中,選用表現最佳之 NH 組與對照組 NN 進行體內試驗,使用9-10週齡 C57BL/6 小鼠,腹腔注射脂多醣 (lipopolysaccharide, L) 和D-半乳糖胺 (D-galactosamine, D) 誘發急性肝損傷,以腸繫膜注射2.5 ×105 cells/mL的方式來進行幹細胞治療,試驗分為1.對照組 2.急性肝損傷組 (L+D) 3.溶劑對照組 (Vehicle) 4. NN細胞治療組 5. NH細胞治療組。結果顯示,NN 與 NH 治療組肝臟外觀壞死與出血情形較 L+D 組明顯改善;H&E染色顯示病理發炎與壞死反應減輕,小葉結構相對清晰,NH組於門脈血管周圍可觀察到卵圓細胞 (oval cell) 輕度增生。肝功能指標方面,NN 組別與 NH 組皆能顯著緩解血清中的天門冬胺酸轉胺酶 (glutamic oxaloacetic transaminase, GOT/AST ) 及丙胺酸轉胺酶 (glutamic pyruvic transaminase, GPT/ALT ) ,兩組間沒有顯著差異。存活率分析顯示,L+D 與 Vehicle 組存活率顯著低於對照組,NN 與 NH 治療後則與對照組差異不顯著。
綜合上述結果,顯示低氧環境可有效促進 mAFSCs 之體外增殖能力,其中氧氣條件的轉換亦具維持幹性基因表現效果。雖在急性肝損傷模型中,低氧與常氧細胞皆可改善肝功能指標,但未觀察到差異顯著性,因此推論,低氧氣培養策略主要應用於提升細胞擴增效率及品質,為後續細胞製備與臨床應用提供潛在優勢。
zh_TW
dc.description.abstractAcute hepatitis, often caused by viral infection, drug toxicity, or chemical injury, may progress to acute liver failure (ALF), a life-threatening condition. Stem cell therapy holds promising clinical potential, with in vitro expansion being a critical prerequisite for therapeutic application. However, stem cells frequently experience a decline in stemness, proliferative arrest, and senescence during extended culture. Previous studies have suggested that hypoxic (H) conditions may help preserve stem cell properties, though the optimal oxygenation strategy and therapeutic efficacy for mouse ALF remains to be fully clarified.
In the first part of this study, we investigated how different oxygenation strategies affect the proliferation and stemness of mouse amniotic fluid stem cells (mAFSCs), particularly whether prior oxygen conditions exert lasting effects and whether enhanced stem cell performance results from the hypoxic transition. mAFSCs were cultured under four conditions: (1) NN: continuous normoxic culture; (2) NH: normoxia switched to hypoxia at passage 4; (3) HN: hypoxia switched to normoxia at passage 4; and (4) HH: continuous hypoxic culture. Experiments were performed using passage 10 mAFSCs. Normoxia and hypoxia were defined as 21% and 5% O₂, respectively. Flow cytometry analysis revealed high expression levels of Sca-1, CD90, CD29, and MHC I, while CD34 and MHC II were expressed at low levels.; CD117 (c-kit) was expressed in approximately 1% of cells. Trilineage differentiation assays demonstrated the successful derivation of osteogenic, adipogenic, and chondrogenic lineages, indicating that the mAFSC line was successfully established. Morphologically, NN and HN groups displayed flattened shapes, while NH and HH groups exhibited spindle-shaped morphology. Proliferation assays revealed that HH had the highest cell counts on day 6, while NH showed superior proliferation by day 8. In terms of stemness genes, NH group expressed significantly higher levels of Oct-4 and Sox-2 compared to other groups. In the second part, the NH group, which demonstrated superior in vitro performance, along with the NN control group, was selected for in vivo evaluation. Acute liver injury was induced in 9- to 10-week-old C57BL/6 mice via intraperitoneal injection of lipopolysaccharide (LPS, L) and D-galactosamine (D-Gal, D). Stem cell therapy was administered by injecting 2.5 × 10⁵ cells/mL via the mesenteric vein. The experimental groups were as follows: (1) Control group, (2) Acute liver injury group (L+D), (3) Vehicle group, (4) NN-treated group, and (5) NH-treated group. The results show that the NN and NH treatment groups exhibited significant improvements in the morphology of the liver, necrosis, and hemorrhage compared to the L+D group. H&E staining revealed reduced inflammatory infiltration and necrosis, with clearer lobular architecture observed particularly in the NH and HH groups Notably, mild oval cell proliferation was observed near the portal area in the NH group. Serum analyses indicated that both NN and NH treatment groups significantly reduced levels of glutamic oxaloacetic transaminase (AST) and glutamic pyruvic transaminase (ALT), with no significant difference between them. Survival analysis showed that the survival rates of the L+D and Vehicle groups were significantly lower than that of the control group, whereas the NN and NH treatment groups showed no significant difference compared to the control.
In summary, hypoxic conditions effectively enhanced the in vitro proliferative capacity of mAFSCs, with oxygen-switching strategies contributing to the maintenance of stemness gene expression. Although both hypoxic- and normoxia-cultured cells improved liver function in the acute liver injury model without significant differences. Therefore, hypoxic culture strategies are considered primarily beneficial for enhancing cell expansion efficiency and quality, offering potential advantages for future cell preparation and clinical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:12:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:12:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iv
目次 vii
圖次 ix
表次 x
縮寫表 xi
第一章 緒論 1
第二章 文獻檢討 2
2.1 肝臟構造與功能 2
2.1.1 肝臟解剖構造 2
2.1.2 肝臟生理功能 5
2.2 急性肝炎與急性肝衰竭 7
2.2.1 急性肝炎 7
2.2.2 急性肝衰竭 8
2.2.3 治療方法 9
2.2.4 急性肝損傷動物疾病模式 11
2.3 幹細胞 11
2.3.1 幹細胞定義與分類 11
2.3.2 羊水幹細胞 12
2.3.3 羊水幹細胞用於再生領域之研究 14
2.4 幹細胞用於急性肝損傷之研究 14
2.5 低氧處理細胞 15
2.5.1 低氧處理介紹 15
2.5.2 低氧定義。 15
2.5.3 細胞經歷低氧的生理機制—經典HIF訊號路徑 16
2.5.4 低氧處理幹細胞用於再生領域之研究 18
第三章 試驗研究 19
3.1 探討不同氧氣處理策略之小鼠羊水幹細胞對其增殖和幹性的影響 19
3.1.1 前言 19
3.1.2 材料與方法 20
3.1.3 結果討論 28
3.2 不同氧氣處理策略之小鼠羊水幹細胞對急性肝損傷治療效果 46
3.2.1 前言 46
3.2.2 材料與方法 46
3.2.3 結果與討論 50
第四章 綜合討論 64
第五章 結論 67
第六章 未來展望 68
第七章 參考文獻 69
-
dc.language.isozh_TW-
dc.subject低氧預處理zh_TW
dc.subject低氧培養zh_TW
dc.subject同種異體細胞移植zh_TW
dc.subject急性肝損傷zh_TW
dc.subject小鼠羊水幹細胞zh_TW
dc.subjectmouse amniotic fluid stem cellsen
dc.subjectacute liver injuryen
dc.subjectallogeneic cell transplantationen
dc.subjecthypoxic preconditioningen
dc.subjecthypoxic cultureen
dc.title不同氧氣處理下小鼠羊水幹細胞對急性肝損傷治療之潛力zh_TW
dc.titleComparing oxygen conditionings in mouse amniotic fluid stem cells for the treatment of acute liver injuryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee宋麗英;陳全木;曾厚;陳文彬zh_TW
dc.contributor.oralexamcommitteeLi-Ying Sung;Chuan-Mu Chen;How Tseng;Wen-Pin Chenen
dc.subject.keyword低氧培養,低氧預處理,小鼠羊水幹細胞,急性肝損傷,同種異體細胞移植,zh_TW
dc.subject.keywordhypoxic culture,hypoxic preconditioning,mouse amniotic fluid stem cells,acute liver injury,allogeneic cell transplantation,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202503888-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-liftN/A-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved