Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳仁治zh_TW
dc.contributor.advisorJen-Chih Chenen
dc.contributor.author蔡文加zh_TW
dc.contributor.authorWen-Chia Tsaien
dc.date.accessioned2025-08-20T16:12:27Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation[1] Aerts, R. J., & De Luca, V. (1992). Phytochrome Is Involved in the Light-Regulation of Vindoline Biosynthesis in Catharanthus. Plant Physiology, 100(2), 1029-1032. https://doi.org/10.1104/pp.100.2.1029
[2] Amirjani, M. R. (2013). Effects of drought stress on the alkaloid contents and growth parameters of Catharanthus roseus. J Agric Biol Sci, 8(11), 745-750.
[3] Cao, Y., Li, K., Li, Y., Zhao, X., & Wang, L. (2020). MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology, 9(3), 61.
[4] Caputi, L., et al. (2018). "Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle." Science 360(6394): 1235-1239.
[5] Chatel, G. (2003). CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. Journal of Experimental Botany, 54(392), 2587-2588.
[6] Chen, Q., Lu, X., Guo, X., Pan, Y., Yu, B., Tang, Z., & Guo, Q. (2018). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicology and Environmental Safety, 157, 266-275.
[7] Costa, M. M. R., Hilliou, F., Duarte, P., Pereira, L. G., Almeida, I., Leech, M., Memelink, J., Barceló, A. R., & Sottomayor, M. (2008). Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in Catharanthus roseus Plant Physiology, 146(2), 403-417.
[8] Courdavault, V., et al. (2014). "A look inside an alkaloid multisite plant: the Catharanthus logistics." Current Opinion in Plant Biology 19: 43-50.
[9] De Carolis, E., Chan, F., Balsevich, J., & De Luca, V. (1990). Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiology, 94(3), 1323-1329.
[10] De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in plant science, 17(6), 349-359.
[11] DeLuca, V., Balsevich, J., Tyler, R., Eilert, U., Panchuk, B., & Kurz, W. (1986). Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. Journal of Plant Physiology, 125(1-2), 147-156.
[12] Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., Szopa, A., Sharifi-Rad, J., Docea, A. O., Mardare, I., Calina, D., & Cho, W. C. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22(1). https://doi.org/10.1186/s12935-022-02624-9
[13] Dutta, A., Sen, J., & Deswal, R. (2007). Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don. Plant Cell Reports, 26(10), 1869-1878. https://doi.org/10.1007/s00299-007-0383-y
[14] El-Sayed, M., & Verpoorte, R. (2004). Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regulation, 44(1), 53-58. https://doi.org/10.1007/s10725-004-2604-5
[15] Fatima, S., Mujib, A., & Tonk, D. (2015). NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidenced by antioxidant enzymes activities. Plant Cell, Tissue and Organ Culture (PCTOC), 121(2), 445-458. https://doi.org/10.1007/s11240-015-0715-5
[16] Fouad, A. S., & Hafez, R. M. (2018). Effect of cobalt nanoparticles and cobalt ions on alkaloids production and expression of CrMPK3 gene in Catharanthus roseus suspension cultures. Cellular and Molecular Biology, 64(12), 62-69. https://doi.org/10.14715/cmb/2018.64.12.13
[17] Guirimand, G., et al. (2011). "The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans‐tonoplast translocations of intermediate metabolites." The FEBS Journal 278(5): 749-763.
[18] Guo, X.-R., Chang, B.-W., Zu, Y.-G., & Tang, Z.-H. (2014). The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress. Journal of Plant Interactions, 9(1), 640-646. https://doi.org/10.1080/17429145.2014.886728
[19] Guo, X.-R., Yang, L., Yu, J.-H., Tang, Z.-H., & Zu, Y.-G. (2007). Alkaloid variations in Catharanthus roseus seedlings treated by different temperatures in short term and long term. Journal of Forestry Research, 18(4), 313-315. https://doi.org/10.1007/s11676-007-0063-3
[20] Idrees, M., Naeem, M., Aftab, T., Khan, M. M. A., & Moinuddin. (2011). Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum, 33(3), 987-999. https://doi.org/10.1007/s11738-010-0631-6
[21] Jagram, N. and I. Dasgupta (2023). "Principles and practice of virus induced gene silencing for functional genomics in plants." Virus genes 59(2): 173-187.
[22] Kulagina, N. M., L. V.; Papon, N.; O'Connor, S. E.; Courdavault, V. (2022). More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Current Opinion in Plant Biology, 67, 102200. https://doi.org/10.1016/j.pbi.2022.102200
[23] Li, C., Wood, J. C., Vu, A. H., Hamilton, J. P., Rodriguez Lopez, C. E., Payne, R. M. E., Serna Guerrero, D. A., Gase, K., Yamamoto, K., Vaillancourt, B., Caputi, L., O’Connor, S. E., & Robin Buell, C. (2023). Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology, 19(8), 1031-1041. https://doi.org/10.1038/s41589-023-01327-0
[24] Li, C. Y., & Gibson, S. I. (2021). Repression of ZCT1, ZCT2 and ZCT3 affects expression of terpenoid indole alkaloid biosynthetic and regulatory genes. PeerJ, 9, e11624. https://doi.org/10.7717/peerj.11624
[25] Liu, Y., Meng, Q., Duan, X., Zhang, Z., & Li, D. (2017). Effects of PEG-induced drought stress on regulation of indole alkaloid biosynthesis in Catharanthus roseus. Journal of Plant Interactions, 12(1), 87-91. https://doi.org/10.1080/17429145.2017.1293852
[26] Liu, Y., Patra, B., Pattanaik, S., Wang, Y., & Yuan, L. (2019). GATA and Phytochrome Interacting Factor Transcription Factors Regulate Light-Induced Vindoline Biosynthesis in Catharanthus roseus. Plant Physiology, 180(3), 1336-1350. https://doi.org/10.1104/pp.19.00489
[27] Liu, Y., Patra, B., Singh, S. K., Paul, P., Zhou, Y., Li, Y., Wang, Y., Pattanaik, S., & Yuan, L. (2021). Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnology Letters, 43(11), 2085-2103.
[28] Liu, Y., et al. (2024). "A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants." Plant Methods 20(1).
[29] Liu Ying, L. Y., Zhao DongMei, Z. D., Zu YuanGang, Z. Y., Tang ZhongHua, T. Z., Zhang ZhongHua, Z. Z., Jiang Yang, J. Y., & Shi DianYi, S. D. (2011). Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings.
[30] Mall, M., Verma, R., Gupta, M., Shasany, A., Khanuja, S., & Shukla, A. (2019). Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. South African Journal of Botany, 123, 98-104.
[31] Menke, F. L. H. (1999). A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. The EMBO Journal, 18(16), 4455-4463. https://doi.org/10.1093/emboj/18.16.4455
[32] Ouwerkerk, P. B. F., Hallard, D., Verpoorte, R., & Memelink, J. (1999). Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Molecular Biology, 41(4), 491-503. https://doi.org/10.1023/a:1006321100550
[33] Ouwerkerk, P. B. F., Trimborn, T. O., Hilliou, F., & Memelink, J. (1999). Nuclear factors GT-1 and 3AF1 interact with multiple sequences within the promoter of the Tdc gene from Madagascar periwinkle: GT-1 is involved in UV light-induced expression. Molecular and General Genetics MGG, 261(4-5), 610-622. https://doi.org/10.1007/s004380050003
[34] Pan, A., Gao, H., Lin, Y., Yang, B., Chang, C., Liu, Z., Wang, Y., Jin, Z., & Yu, F. (2025). Isolation and functional identification of Jasmonte resistant 1, a Jasmonic acid isoleucine-conjugating enzyme in Catharanthus roseus. Journal of Plant Research. https://doi.org/10.1007/s10265-025-01646-4
[35] Pan, Q., Chen, Y., Wang, Q., Yuan, F., Xing, S., Tian, Y., Zhao, J., Sun, X., & Tang, K. (2010). Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regulation, 60(2), 133-141. https://doi.org/10.1007/s10725-009-9429-1
[36] Pan, Q., Wang, C., Xiong, Z., Wang, H., Fu, X., Shen, Q., Peng, B., Ma, Y., Sun, X., & Tang, K. (2019). CrERF5, an AP2/ERF Transcription Factor, Positively Regulates the Biosynthesis of Bisindole Alkaloids and Their Precursors in Catharanthus roseus. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00931
[37] Pan, Y.-j., Lin, Y.-c., Yu, B.-f., Zu, Y.-g., Yu, F., & Tang, Z.-H. (2018). Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus. BMC genomics, 19, 1-14.
[38] Patra, B., Pattanaik, S., Schluttenhofer, C., & Yuan, L. (2018). A network of jasmonate‐responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytologist, 217(4), 1566-1581. https://doi.org/10.1111/nph.14910
[39] Paul, P., Singh, S. K., Patra, B., Liu, X., Pattanaik, S., & Yuan, L. (2020). Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis of Specialized Metabolites in Plants. Plant Physiology, 182(2), 840-856. https://doi.org/10.1104/pp.19.00772
[40] Paul, P., Singh, S. K., Patra, B., Sui, X., Pattanaik, S., & Yuan, L. (2017). A differentially regulated AP/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytologist, 213(3), 1107-1123. https://doi.org/10.1111/nph.14252
[41] Pauw, B., Hilliou, F. A., Martin, V. S., Chatel, G., de Wolf, C. J., Champion, A., Pré, M., van Duijn, B., Kijne, J. W., van der Fits, L., & Memelink, J. (2004). Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem, 279(51), 52940-52948. https://doi.org/10.1074/jbc.M404391200
[42] Qu, Y., et al. (2018). "Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19 E-geissoschizine." Proceedings of the National Academy of Sciences 115(12): 3180-3185.
[43] Rai, V., Tandon, P. K., & Khatoon, S. (2014). Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine. BioMed Research International, 2014, 1-10. https://doi.org/10.1155/2014/934182
[44] Ramani, S., & Jayabaskaran, C. (2008). Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. Journal of Molecular Signaling, 3, 9. https://doi.org/10.1186/1750-2187-3-9
[45] Research, P. M. (2024). Chemotherapy Drugs Market. https://www.persistencemarketresearch.com/market-research/chemotherapy-drugs-market.asp
[46] Schweizer, F. C., M.; Pollier, J.; Van Moerkercke, A.; Vanden Bossche, R.; De Clercq, R.; Goossens, A. (2018). An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering, 48, 150–162.
[47] Singh, S. K., Patra, B., Paul, P., Liu, Y., Pattanaik, S., & Yuan, L. (2020). Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci, 293, 110408. https://doi.org/10.1016/j.plantsci.2020.110408
[48] Smith, J. I., Smart, N. J., Misawa, M., Kurz, W. G. W., Tallevi, S. G., & Dicosmo, F. (1987). Increased accumulation of indole alkaloids by some cell lines of Catharanthus roseus in response to addition of vanadyl sulphate. Plant Cell Reports, 6(2), 142-145. https://doi.org/10.1007/bf00276673
[49] Soltani, N., Nazarian-Firouzabadi, F., Shafeinia, A., Sadr, A. S., & Shirali, M. (2020). The expression of Terpenoid Indole Alkaloid (TIAs) pathway genes in Catharanthus roseus in response to salicylic acid treatment. Molecular Biology Reports, 47(9), 7009-7016. https://doi.org/10.1007/s11033-020-05759-y
[50] Srivastava, N., & Srivastava, A. (2010). Influence of some heavy metals on growth, alkaloid content and composition in Catharanthus roseus L. Indian Journal of Pharmaceutical Sciences, 72(6), 775.
[51] St‐Pierre, B., Laflamme, P., Alarco, A. M., D, V., & Luca, E. (1998). The terminal O‐acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A‐dependent acyl transfer. The Plant Journal, 14(6), 703-713. https://doi.org/10.1046/j.1365-313x.1998.00174.x
[52] Sui, X., Singh, S. K., Patra, B., Schluttenhofer, C., Guo, W., Pattanaik, S., & Yuan, L. (2018). Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany, 69(18), 4267-4281. https://doi.org/10.1093/jxb/ery229
[53] Sung, Y. C., Lin, C. P., & Chen, J. C. (2014). Optimization of virus‐induced gene silencing in Catharanthus roseus. Plant Pathology, 63(5), 1159-1167. https://doi.org/10.1111/ppa.12186
[54] Suttipanta, N., Pattanaik, S., Kulshrestha, M., Patra, B., Singh, S. K., & Yuan, L. (2011). The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology, 157(4), 2081-2093. https://doi.org/10.1104/pp.111.181834
[55] Tatsis, E. C., et al. (2017). "A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate." Nature communications 8(1): 316.
[56] Traverse, K. K. F., Breselge, S., Trautman, J. G., Dee, A., Wang, J., Childs, K. L., & Lee-Parsons, C. W. T. (2024). Characterization of the ZCTs, a subgroup of Cys2-His2 zinc finger transcription factors regulating alkaloid biosynthesis in Catharanthus roseus. Plant Cell Reports, 43(9). https://doi.org/10.1007/s00299-024-03295-8
[57] van der Fits, L., & Memelink, J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289(5477), 295-297.
[58] Van Moerkercke, A., Steensma, P., Gariboldi, I., Espoz, J., Purnama, P. C., Schweizer, F., Miettinen, K., Vanden Bossche, R., De Clercq, R., Memelink, J., & Goossens, A. (2016). The basic helix‐loop‐helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. The Plant Journal, 88(1), 3-12. https://doi.org/10.1111/tpj.13230
[59] Van Moerkercke, A., Steensma, P., Schweizer, F., Pollier, J., Gariboldi, I., Payne, R., Vanden Bossche, R., Miettinen, K., Espoz, J., Purnama, P. C., Kellner, F., Seppänen-Laakso, T., O’Connor, S. E., Rischer, H., Memelink, J., & Goossens, A. (2015). The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proceedings of the National Academy of Sciences, 112(26), 8130-8135. https://doi.org/10.1073/pnas.1504951112
[60] Wang, X., Pan, Y.-J., Chang, B.-W., Hu, Y.-B., Guo, X.-R., & Tang, Z.-H. (2016). Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes inCatharanthus roseus. BioMed Research International, 2016, 1-8. https://doi.org/10.1155/2016/3708187
[61] Yang, Z., Patra, B., Li, R., Pattanaik, S., & Yuan, L. (2013). Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus. Planta, 238(6), 1039-1049. https://doi.org/10.1007/s00425-013-1949-2
[62] Zhang, H., Hedhili, S., Montiel, G., Zhang, Y., Chatel, G., Pré, M., Gantet, P., & Memelink, J. (2011). The basic helix‐loop‐helix transcription factor CrMYC2 controls the jasmonate‐responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal, 67(1), 61-71. https://doi.org/10.1111/j.1365-313x.2011.04575.x
[63] Zhang, X.-N., Liu, J., Liu, Y., Wang, Y., Abozeid, A., Yu, Z.-G., & Tang, Z.-H. (2018). Metabolomics analysis reveals that ethylene and methyl jasmonate regulate different branch pathways to promote the accumulation of terpenoid indole alkaloids in Catharanthus roseus. Journal of natural products, 81(2), 335-342.
[64] Zheng, Z., & Wu, M. (2004). Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Science, 166(2), 507-514.
[65] Zhou, M., & Memelink, J. (2016). Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology advances, 34(4), 441-449.
[66] Zhou, P., Yang, J., Zhu, J., He, S., Zhang, W., Yu, R., Zi, J., Song, L., & Huang, X. (2015). Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Applied microbiology and biotechnology, 99, 7035-7045.
[67] Zhu, W., Yang, B., Komatsu, S., Lu, X., Li, X., & Tian, J. (2015). Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00582
[68] 賴建閔. (2014). 建立日日春與CrPR1a及CrLOX2相關之轉錄因子調控網絡 國立臺灣大學]. https://hdl.handle.net/11296/et6ss7
[69] 羅孝甫. (2014). 日日春上調控 CrPR1a 及 CrLOX2 相關轉錄因子之調控網絡之探討 國立臺灣大學]. https://hdl.handle.net/11296/8c7n3y
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98899-
dc.description.abstract日日春(Catharanthus roseus)是一種具有藥用價值的植物,能合成多種植物次級代謝物,其中包括雙吲哚類生物鹼——長春新鹼(vinblastine)與長春花鹼(vincristine),兩者具有強效的抗癌活性,並廣泛應用於睪丸癌、乳癌與肺癌等疾病的臨床治療。然而,這些生物鹼在植物體內的天然產量極低,對藥品生產造成重大限制。
本研究旨在找出可能參與長春新鹼生合成途徑調控的轉錄因子(TF)。我們篩選了來自先前研究的245 個轉錄因子病毒誘導基因沉默(VIGS)品系。整體篩選流程分為三個階段。首先進行第一輪篩選,利用半定量 RT-PCR 檢測四個與長春新鹼生合成相關的標誌基因(TDC、STR、D4H 和 PRX1)的表現變化。接著進行第二輪篩選,使用即時定量 PCR(RT-qPCR)進一步驗證這些基因的表現變化。最後進行第三輪篩選,以質譜儀分析選定品系中萜吲哚生物鹼(TIA)的實際累積量。
在第一輪篩選中,我們發現69 個 VIGS 品系對標誌基因表現有明顯影響;其中有17 個品系在第二輪篩選中表現出顯著差異。我們從中挑選8 個品系進行代謝物分析,結果發現MYB-34與MYB-36 的沉默顯著改變了 TIA 的累積量。另一方面,作為正對照的MYC2與ORCA3在沉默後,無論是標誌基因表現或 TIA 含量皆未出現顯著變化,與預期結果不符。
總結而言,雖然本研究所建立的篩選系統仍有優化空間,但已成功提供 TIA 生合成調控網絡的嶄新線索,並找出具有潛力的新穎調控因子,可供未來深入探討。
zh_TW
dc.description.abstractCatharanthus roseus is a medicinal plant known for producing a variety of phytochemicals, including the bisindole alkaloids vinblastine and vincristine, which exhibit potent anticancer activities and are clinically used in the treatment of testicular, breast, and lung cancers. However, the natural yield of these alkaloids in C. roseus is extremely low, posing a major challenge for pharmaceutical production.
In this study, we aimed to identify transcription factors (TFs) that may regulate the vinblastine biosynthesis pathway by screening 245 TF virus-induced gene silencing (VIGS) lines generated from previous studies. The screening process consisted of three stages. In the primary screening, we used semi-quantitative RT-PCR to evaluate the expression of four marker genes—TDC, STR, D4H, and PRX1—involved in vinblastine biosynthesis. The secondary screening was conducted using real-time quantitative PCR (RT-qPCR) to validate gene expression changes. In the third stage, we employed mass spectrometry to quantify the accumulation of terpenoid indole alkaloids (TIAs) in the selected VIGS lines.
From the primary screen, we identified 69 candidate TF VIGS lines showing altered expression of marker genes. Of these, 17 lines exhibited significant fold changes in the secondary screen. Eight of these lines were selected for metabolite analysis, and we found that silencing of MYB-34 and MYB-36 significantly altered TIA accumulation. Conversely, silencing of MYC2 and ORCA3, which served as positive controls, did not result in significant changes in marker gene expression or TIA levels, contrary to our expectations.
Overall, while the screening system still requires further optimization, this study provides new insights into the transcriptional regulation of TIA biosynthesis and identifies potential TF candidates involved in regulating vinblastine production.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:12:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:12:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 I
ABSTRACT III
Abbreviations V
目次 II
圖次 III
表次 IV
Introduction 1
Materials and methods 13
Plant material 13
Agrobacterium-mediated virus-induced gene silencing 13
RNA extraction and reverse transcription 15
Real -time PCR 15
Terpenoid indole alkaloid content analysis 16
Results 17
Primary screening using semi-quantitative RT-PCR 17
Secondary screening using RT-PCR 18
Measurement of TIA content in VIGS plants 19
Discussion 21
Tables and figures 28
Reference 42
Supplementary data 54
-
dc.language.isoen-
dc.subject日日春zh_TW
dc.subject長春鹼zh_TW
dc.subject轉錄因子zh_TW
dc.subject萜類吲哚生物鹼zh_TW
dc.subject病毒誘導基因沉默zh_TW
dc.subjectTerpenoid indole alkaloidsen
dc.subjectTranscription factorsen
dc.subjectVirus-induced gene silencingen
dc.subjectVinblastineen
dc.subjectCatharanthus roseusen
dc.title篩選影響日日春長春鹼含量之調控因子zh_TW
dc.titleScreening for regulatory factors influencing vinblastine levels in Catharanthus roseusen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉啟德;林詩舜;洪傳揚zh_TW
dc.contributor.oralexamcommitteeChi-Te Liu;Shih-Shun Lin;Chwan-Yang Hongen
dc.subject.keyword日日春,長春鹼,轉錄因子,萜類吲哚生物鹼,病毒誘導基因沉默,zh_TW
dc.subject.keywordCatharanthus roseus,Terpenoid indole alkaloids,Vinblastine,Virus-induced gene silencing,Transcription factors,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202504177-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved