請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉立偉 | zh_TW |
| dc.contributor.advisor | Li-Wei Liu | en |
| dc.contributor.author | 彭浩丞 | zh_TW |
| dc.contributor.author | Hao-Cheng Peng | en |
| dc.date.accessioned | 2025-08-20T16:11:58Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] P. J. Armstrong, C. O. Frederick, et al. A mathematical representation of the multiaxial Bauschinger effect, volume 731. Berkeley Nuclear Laboratories Berkeley, CA,1966.
[2] J. Chaboche and G. Cailletaud. Integration methods for complex plastic constitutive equations. Computer Methods in Applied Mechanics and Engineering, 133(1-2):125–155, 1996. [3] S. Chen, X. Xie, and H. Zhuge. Hysteretic model for steel piers considering the local buckling of steel plates. Engineering Structures, 183:303–318, 2019. [4] A. K. Chopra and R. K. Goel. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3):561–582, 2002. [5] J. Douglas. Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews, 61(1-2):43–104, 2003. [6] C. O. Frederick and P. J. Armstrong. A mathematical representation of the multiaxial bauschinger effect. Materials at High Temperatures, 24(1):1–26, 2007. [7] Q. Han, H. Dong, X. Du, D. Sun, and C. Huang. Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect. Journal of Vibroengineering, 16(3):1151–1161, 2014. [8] S. W. Han and A. K. Chopra. Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthquake Engineering & Structural Dynamics, 35(15):1853–1873, 2006. [9] R. Hill. The mathematical theory of plasticity, volume 11. Oxford university press, 1998. [10] H.-K. Hong and C.-S. Liu. Prandtl-reuss elastoplasticity: on-off switch and superposition formulae. International Journal of Solids and Structures, 34(33-34):4281–4304, 1997. [11] H.-K. Hong and C.-S. Liu. Internal symmetry in bilinear elastoplasticity. International Journal of Non-Linear Mechanics, 34(2):279–288, 1999. [12] H.-K. Hong and C.-S. Liu. Internal symmetry in the constitutive model of perfect elastoplasticity. International Journal of Non-Linear Mechanics, 35(3):447–466, 2000. [13] H.-K. Hong, L.-W. Liu, Y.-P. Shiao, and C.-J. Chang. Building structure with elastoplastic bilinear model under multi-dimensional earthquake forces. Journal of Mechanics, 38:598–609, 2022. [14] A. Y. Ishlinsky. Some applications of statistics to description of laws of body deformation. Reports of the Academy of Science of the USSR, ONT, 9:583–590, 1944. [15] W. D. Iwan. A distributed-element model for hysteresis and its steady-state dynamic response. Journal of Applied Mechanics, 33(4):893–900, Dec. 1966. [16] N. D. Lagaros. Multicomponent incremental dynamic analysis considering variable incident angle. Structure and Infrastructure Engineering, 6(1-2):77–94, 2010. [17] H.-S. Lim. Study of reinforced concrete column under cyclic loading with ncree database. Master’s thesis, National Taiwan University, Taipei, Taiwan, 2021. Advisor: Shyh-Jiann Hwang. [18] J.-L. Lin and K.-C. Tsai. Simplified seismic analysis of asymmetric building systems. Earthquake Engineering & Structural Dynamics, 36(4):459–479, 2007. [19] J.-L. Lin and K.-C. Tsai. Seismic analysis of non proportionally damped two-way asymmetric elastic buildings under bi-directional seismic ground motions. Journal of Earthquake Engineering, 12(7):1139–1156, 2008. [20] J.-L. Lin and K.-C. Tsai. Seismic analysis of two-way asymmetric building systems under bi-directional seismic ground motions. Earthquake Engineering & Structural Dynamics, 37(2):305–328, 2008. [21] C.-S. Liu. Two-dimensional bilinear oscillator: group-preserving scheme and steady-state motion under harmonic loading. International Journal of Non-linear Mechanics, 38(10):1581–1602, 2003. [22] C.-S. Liu. Computational applications of the Poincaré group on the elastoplasticity with kinematic hardening. CMES-Computer Modeling in Engineering & Sciences, 2005. [23] C.-S. Liu. A method of Lie-symmetry GL (n, r) for solving non-linear dynamical systems. International Journal of Non-Linear Mechanics, 52:85–95, 2013. [24] C.-S. Liu and C. Chang. Lie group symmetry applied to the computation of convex plasticity constitutive equation. CMES-Computer Modeling in Engineering & Sciences, 2004. [25] C.-S. Liu, H.-K. Hong, and D.-Y. Liou. Two-dimensional friction oscillator: group-preserving scheme and handy formulae. Journal of Sound and Vibration, 266(1):49–74, 2003. [26] C.-S. Liu and C.-F. Li. Geometrical numerical algorithms for a plasticity model with armstrong–frederick kinematic hardening rule under strain and stress controls. International Journal for Numerical Methods in Engineering, 63(10):1396–1423, 2005. [27] L.-W. Liu, K.-Y. Liu, and D.-G. Huang. Incremental analysis for seismic assessment of bridge with functional bearing system subjected to near-fault earthquake. International Journal of Structural Stability and Dynamics, 19(01):1940003, 2019. [28] J. Lubliner. Plasticity theory. Courier Corporation, 2008. [29] Q. Luo, F. Dai, Y. Liu, M. Gao, Z. Li, and R. Jiang. Seismic performance assessment of velocity pulse-like ground motions under near-field earthquakes. Rock Mechanics and Rock Engineering, 54(8):3799–3816, 2021. [30] A. Nath, S. V. Barai, and K. K. Ray. Studies on the experimental and simulated cyclic-plastic response of structural mild steels. Journal of Constructional Steel Research, 182:106652, 2021. [31] N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3):67–94, 1959. [32] M. Perrault and P. Guéguen. Correlation between ground motion and building response using california earthquake records. Earthquake Spectra, 31(4):2027–2046, 2015. [33] J. W. Polderman and J. C. Willems. Introduction to mathematical systems theory: a behavioral approach. Springer, 1998. [34] W. Prager. The theory of plasticity: a survey of recent achievements. Proceedings of the Institution of Mechanical Engineers, 169(1):41–57, 1955. [35] L. Prandtl. Ein gedankenmodell für den zerreißvorgang spröder körper. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 13(2):129–133, 1933. [36] A. B. Rigato and R. A. Medina. Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions. Engineering Structures, 29(10):2593–2601, 2007. [37] J. Srnec Novak, F. De Bona, and D. Benasciutti. An isotropic model for cyclic plasticity calibrated on the whole shape of hardening/softening evolution curve. Metals, 9(9):950, 2019. [38] J. Su, J. Wang, Z. Li, and X. Liang. Effect of reinforcement grade and concrete strength on seismic performance of reinforced concrete bridge piers. Engineering Structures, 198:109512, 2019. [39] T.-L. Tasi. Analysis of near-fault seismic response using viscoelastoplastic bridge models with varying friction. Master’s thesis, National Taiwan University, Taipei, Taiwan, 2022. Advisor:Kuang-Yen Liu, Li-Wei Liu. [40] D. Vamvatsikos and C. A. Cornell. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3):491–514, 2002. [41] I. R. Whiteman. A mathematical model depicting the stress-strain diagram and the hysteresis loop. Journal of Applied Mechanics, 26(1):95–100, Mar. 1959. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98897 | - |
| dc.description.abstract | 本研究提出一套考慮黏彈塑性行為之非線性結構分析模式,能同時模擬結構進入塑性階段後所產生的非線性硬化/軟化行為,以及因塑性累積導致彈性勁度損傷的現象。在模式的設計上納入兩個水平與一個扭轉自由度,能有效捕捉建築物於地震激振下的多方向反應。研究從柱子的建模出發,並提出該模式的計算策略,進一步探討模式在不同狀態下的反應。在柱模式建構完成後,本研究將其擴展至多層樓系統,透過數值驗證與真實地震歷時模擬,證實本模式算法流程的正確性後,進一步進行地震力的分析,並紀錄不同歷時分析所需的時間得到平均分析每筆歷時所需的時間,顯示本模式具有良好的計算效能。進一步雙線性的模式進行比較,可觀察出在最大層間位移和塑性當量這兩指標下會有低估的情況產生,而在最大層間剪力則是有高估的情形,而本模式可提供更準確的預測。此外,研究亦探討地震入射角對非對稱建築反應的影響,說明不同角度下可能產生顯著的扭轉效應,並據此進行樓層級補強分析,提出針對不同樓層與方向的目標式補強策略。整體而言,本研究建立之分析架構具備高精度、穩定性與延展性,提供一套適用於不對稱建築在多方向地震作用下之耐震評估與補強設計的有效工具。 | zh_TW |
| dc.description.abstract | This study proposes a nonlinear structural analysis model that considers viscoelastoplastic behavior, which can simulate the nonlinear hardening/softening behavior after the structure enters the plastic phase, as well as the phenomenon of elastic stiffness degradation caused by plastic equivalent accumulation. The model is designed with two horizontal and one torsional degrees of freedom, which can effectively capture the multidirectional responses of buildings under seismic excitations. The study starts with the modeling of columns. The computational strategy of the model is proposed, and the responses of the model under different conditions are further investigated. After the model is established, this study extends it to multi-story systems. Through numerical verification and real seismic time history simulation, the correctness of the computational procedure is confirmed. The computation time required for analyzing different time histories is analyzed, proving that our model demonstrates good computational efficiency. Further comparisons with a bilinear model show that under the two indicators of maximum inter-story drift and plastic equivalent, there tends to be underestimation, while maximum inter-story shear tends to be overestimated. Our model provides more accurate predictions. In addition, this study also investigates the influence of seismic incidence angles on the response of asymmetric buildings, illustrating that significant torsional effects may occur under different angles. Based on this, story-level retrofitting analyses are conducted, and target-oriented retrofitting strategies for different stories and directions are proposed. Overall, the analysis framework established in this study possesses high accuracy, stability, and extensibility, providing an effective tool for seismic assessment and retrofitting design of asymmetric buildings under multidirectional seismic actions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:11:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:11:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Notations and Conventions xvii Chapter 1 Introduction 1 1.1 Analytical models in structural dynamics . . . . . . . . . . . . . . . 1 1.2 Elastoplastic models in solid mechanics . . . . . . . . . . . . . . . 2 1.3 The influence of incident angle on seismic analysis . . . . . . . . . 3 1.4 The influence of peak ground motion on seismic analysis . . . . . . 4 1.5 Experiments of push over analysis . . . . . . . . . . . . . . . . . . 5 1.6 Hardening and softening rules of materials . . . . . . . . . . . . . . 6 Chapter 2 Viscoelastoplastic model of column and building structure 7 2.1 Model formulation of viscoelastoplastic model with Armstrong–Frederick hardening rule and damage . . . . . . . . . . . . . . . . . . . 7 2.2 The straining conditions and two-phase dynamical system of the damage A-F model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Pseudo internal symmetry of the damage A-F model . . . . . . . . . 15 2.4 Model formulation of the damage A-F building model . . . . . . . . 19 2.4.1 Three phase of building nodel . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Viscoelastic phase ( Phase VE ) . . . . . . . . . . . . . . . . . . . 22 2.4.3 Viscoelastoplastic Phase 1 ( Phase VEP1 ) : cases with non-adjacent floors entering the viscoelastoplastic phase . . . . . . . . . . . . . 24 2.4.4 Viscoelastoplastic Phase 2 ( Phase VEP2 ): adjacent floors entering the viscoelastoplastic phase . . . . . . . . . . . . . . . . . . . . . 28 2.5 Multi-phase dynamical system formulation of two-story buildings . 31 2.5.1 Phase VE of two-story buildings . . . . . . . . . . . . . . . . . . 32 2.5.2 Phase VEP1 of two-story buildings . . . . . . . . . . . . . . . . . 34 2.5.3 Phase VEP2 of two-story buildings . . . . . . . . . . . . . . . . . 37 Chapter 3 Computational strategy of viscoelastoplastic model with Armstrong–Frederick hardening rule and damage 39 3.1 Multi-phases computation . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Pull-back module . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Examination of complementary trio . . . . . . . . . . . . . . . . . 50 3.5 Computational efficiency . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 4 Seismic behavior of column and building structure 57 4.1 Damage A–F model analysis of column response . . . . . . . . . . 58 4.2 Case study buildings and input ground motions . . . . . . . . . . . 63 4.2.1 Model parameters of symmetric building . . . . . . . . . . . . . . 64 4.2.2 Model parameters of asymmetric building . . . . . . . . . . . . . 66 4.2.3 Consideration of ground motions . . . . . . . . . . . . . . . . . . 68 4.3 Seismic response of symmetric and asymmetric building . . . . . . 69 4.3.1 The time history of ground motions . . . . . . . . . . . . . . . . . 69 4.3.2 Response of asymmetric building under far-field ground motions . 75 4.3.3 Response of asymmetric building under near fault ground motions 77 4.3.4 Comparisons between the bilinear models, A-F models, and the damage A-F models . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.5 The plastic equivalent distribution . . . . . . . . . . . . . . . . . . 83 4.4 Analysis of incident angle under different seismic excitation . . . . 85 4.4.1 Incident angle analysis for maximum response under a single ground motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.2 Distribution of maximum responses and incident angles across ground motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5 Analysis of structural retrofitting . . . . . . . . . . . . . . . . . . . 92 Chapter 5 Conclusion and future works 99 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Future woks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References 103 | - |
| dc.language.iso | en | - |
| dc.subject | 損傷 | zh_TW |
| dc.subject | 非線性硬化 | zh_TW |
| dc.subject | 非對稱建築補強 | zh_TW |
| dc.subject | 入射角分析 | zh_TW |
| dc.subject | 雙向地震力反應 | zh_TW |
| dc.subject | Bidirectional Seismic Analysis | en |
| dc.subject | Seismic Retrofit of Asymmetric Structures | en |
| dc.subject | Damage | en |
| dc.subject | Non-linear Hardening | en |
| dc.subject | Incident Angle Analysis | en |
| dc.title | 具非線性硬軟化和損傷之多層建築的建模與耐震分析 | zh_TW |
| dc.title | Modeling and Seismic Analysis of Multi-Story Buildings with Nonlinear Hardening-Softening and Damage Behavior | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃尹男;林瑞良;賴勇安 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Nan Huang;Jui-Liang Lin;Yong-An Lai | en |
| dc.subject.keyword | 非線性硬化,損傷,雙向地震力反應,入射角分析,非對稱建築補強, | zh_TW |
| dc.subject.keyword | Non-linear Hardening,Damage,Bidirectional Seismic Analysis,Incident Angle Analysis,Seismic Retrofit of Asymmetric Structures, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202503004 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 24.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
