請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98883完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林詩舜 | zh_TW |
| dc.contributor.advisor | Shih-Shun Lin | en |
| dc.contributor.author | 鍾昭慈 | zh_TW |
| dc.contributor.author | Chao-Tzu Chung | en |
| dc.date.accessioned | 2025-08-20T16:08:56Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | Alabadí, D., Yanovsky, M.J., Más, P., Harmer, S.L., and Kay, S.A. (2002). Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12, 757-761.
Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Bell, E., Creelman, R.A., and Mullet, J.E. (1995). A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proceedings of the National Academy of Sciences 92, 8675-8679. Chen, J., Liu, L., You, C., Gu, J., Ruan, W., Zhang, L., Gan, J., Cao, C., Huang, Y., Chen, X., and Ma, J. (2018). Structural and biochemical insights into small RNA 3′ end trimming by Arabidopsis SDN1. Nature Communications 9, 3585. Chen, X., Liu, J., Cheng, Y., and Jia, D. (2002). HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 129, 1085-1094. Choi, H., Jeong, S., Kim, D.S., Na, H.J., Ryu, J.S., Lee, S.S., Nam, H.G., Lim, P.O., and Woo, H.R. (2014). The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling. Physiol Plant 150, 308-320. Corrales, A.R., Carrillo, L., Lasierra, P., Nebauer, S.G., Dominguez-Figueroa, J., Renau-Morata, B., Pollmann, S., Granell, A., Molina, R.V., Vicente-Carbajosa, J., and Medina, J. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ 40, 748-764. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K.D., Carrington, J.C., and Voinnet, O. (2006). Hierarchical Action and Inhibition of Plant Dicer-Like Proteins in Antiviral Defense. Science 313, 68-71. Demesa-Arévalo, E., and Vielle-Calzada, J.-P. (2013a). The Classical Arabinogalactan Protein AGP18 Mediates Megaspore Selection in Arabidopsis The Plant Cell 25, 1274-1287. Demesa-Arévalo, E., and Vielle-Calzada, J.P. (2013b). The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. Plant Cell 25, 1274-1287. Dixon, D.P., Davis, B.G., and Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277, 30859-30869. Gangappa, S.N., Crocco, C.D., Johansson, H., Datta, S., Hettiarachchi, C., Holm, M., and Botto, J.F. (2013). The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell 25, 1243-1257. Gao, M., Zhang, C., Angel, W., Kwak, O., Allison, J., Wiratan, L., Hallworth, A., Wolf, J., and Lu, H. (2022). Circadian regulation of the GLYCINE-RICH RNA-BINDING PROTEIN gene by the master clock protein CIRCADIAN CLOCK-ASSOCIATED 1 is important for plant innate immunity. Journal of Experimental Botany 74, 991-1003. Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840. Hu, S.-F., Wei, W.-L., Hong, S.-F., Fang, R.-Y., Wu, H.-Y., Lin, P.-C., Sanobar, N., Wang, H.-P., Sulistio, M., Wu, C.-T., Lo, H.-F., and Lin, S.-S. (2020). Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Botanical Studies 61, 22. Huang, Y., Ji, L., Huang, Q., Vassylyev, D.G., Chen, X., and Ma, J.-B. (2009). Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461, 823-827. Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306. Incarbone, M., and Dunoyer, P. (2013). RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18, 382-392. Kasschau, K.D., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and Carrington, J.C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4, 205-217. Marzi, D., Brunetti, P., Mele, G., Napoli, N., Calò, L., Spaziani, E., Matsui, M., De Panfilis, S., Costantino, P., Serino, G., and Cardarelli, M. (2020). Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. Plant J 103, 379-394. Morcillo, R.J.L., Leal-López, J., Férez-Gómez, A., López-Serrano, L., Baroja-Fernández, E., Gámez-Arcas, S., Tortosa, G., López, L.E., Estevez, J.M., Doblas, V.G., Frías-España, L., García-Pedrajas, M.D., Sarmiento-Villamil, J., and Pozueta-Romero, J. (2024). RAPID ALKALINIZATION FACTOR 22 is a key modulator of the root hair growth responses to fungal ethylene emissions in Arabidopsis. Plant Physiol 196, 2890-2904. Nakamichi, N., Kiba, T., Kamioka, M., Suzuki, T., Yamashino, T., Higashiyama, T., Sakakibara, H., and Mizuno, T. (2012). Transcriptional repressor PRR5 directly regulates clock-output pathways. Proceedings of the National Academy of Sciences 109, 17123-17128. Pan, Z.-J., Wei, W.-L., Tran, P.-A., Fang, R.-Y., Pham, T.H., Bowman, J.L., Chung, C.-T., Shen, B.-N., Yang, J.-T., Chang, H.-H., Jane, W.-N., Cheng, C.-H., Wang, C.-C., Wu, H.-Y., Hong, S.-F., Shang, Q.-W., Hu, S.-F., Lin, P.-C., Wu, F.-H., Lin, C.-S., Hung, Y.-L., Shen, T.-L., and Lin, S.-S. (2025). HC-Pro inhibits HEN1 methyltransferase activity, leading to autophagic degradation of AGO1. Nature Communications 16, 2503. Pedersen, D.S., and Grasser, K.D. (2010). The role of chromosomal HMGB proteins in plants. Biochim Biophys Acta 1799, 171-174. Pietrykowska, H., Sierocka, I., Zielezinski, A., Alisha, A., Carrasco-Sanchez, J.C., Jarmolowski, A., Karlowski, W.M., and Szweykowska-Kulinska, Z. (2022). Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany 73, 4528-4545. Sanobar, N., Lin, P.C., Pan, Z.J., Fang, R.Y., Tjita, V., Chen, F.F., Wang, H.C., Tsai, H.L., Wu, S.H., Shen, T.L., Chen, Y.H., and Lin, S.S. (2021). Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses 13. Siré, C., Moreno, A.B., Garcia-Chapa, M., López-Moya, J.J., and Segundo, B.S. (2009). Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. Febs Letters 583, 1039-1044. Tsai, H.-L., Li, Y.-H., Hsieh, W.-P., Lin, M.-C., Ahn, J.H., and Wu, S.-H. (2014). HUA ENHANCER1 Is Involved in Posttranscriptional Regulation of Positive and Negative Regulators in Arabidopsis Photomorphogenesis The Plant Cell 26, 2858-2872. Tu, B., Liu, L., Xu, C., Zhai, J., Li, S., Lopez, M.A., Zhao, Y., Yu, Y., Ramachandran, V., Ren, G., Yu, B., Li, S., Meyers, B.C., Mo, B., and Chen, X. (2015). Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11, e1005119. Wasternack, C., and Song, S. (2016). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany 68, 1303-1321. Yu, B., Chapman, E.J., Yang, Z., Carrington, J.C., and Chen, X. (2006). Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Letters 580, 3117-3120. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932-935. Yu, B., Bi, L., Zhai, J., Agarwal, M., Li, S., Wu, Q., Ding, S.W., Meyers, B.C., Vaucheret, H., and Chen, X. (2010). siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis. Nucleic Acids Res 38, 5844-5850. Zhang, B., Feng, M., Zhang, J., and Song, Z. (2023). Involvement of CONSTANS-like Proteins in Plant Flowering and Abiotic Stress Response. Int J Mol Sci 24. Zhang, T., Zhang, R., Zeng, X.-Y., Lee, S., Ye, L.-H., Tian, S.-L., Zhang, Y.-J., Busch, W., Zhou, W.-B., Zhu, X.-G., and Wang, P. (2024). GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. Plant Physiology 194, 2400-2421. Zhao, Y., Yu, Y., Zhai, J., Ramachandran, V., Dinh, Thanh T., Meyers, Blake C., Mo, B., and Chen, X. (2012). The Arabidopsis Nucleotidyl Transferase HESO1 Uridylates Unmethylated Small RNAs to Trigger Their Degradation. Current Biology 22, 689-694. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98883 | - |
| dc.description.abstract | RNA靜默 (RNA silencing) 是調控基因表達的重要機制,主要透過小RNA (如siRNA和miRNA) 來調節目標mRNA的切割或翻譯抑制。HUA ENHANCER 1 (HEN1) 作為2'-O-甲基轉移酶,負責對小RNA的3'端進行甲基化修飾,以保護其免受核酸酶降解並維持穩定性。當HEN1失去活性時會產生未甲基化的miRNA,隨後HESO1會對其進行尿苷化修飾,使其降解。P1/HC-ProTu作為RNA靜默的病毒抑制子 (VSRs),其功能會抑制HEN1結合miRNA的活性,進而影響RNA靜默機制。本研究探討了HEN1體外與體內甲基化活性對植物基因調控及RNA靜默能力的影響。我們成功構建了可誘導表達的HESO1轉基因植物 (HA-HESO1/P1/HC-ProTu/heso1-1和HESO1-HA/P1/HC-ProTu/heso1-1),為進一步研究HESO1與AGO1相互作用奠定基礎。透過體外生化實驗證實,his-AtHEN1D719N完全失去甲基化miRNA的能力,直接證明了D719N突變對RNA靜默功能的關鍵影響。值得注意的是,地錢 (Marchantia polymorpha) MpHEN1中相同保守位點的突變 (D760N) 仍保留部分甲基化活性,顯示不同物種間蛋白質功能演化的差異。轉錄組分析顯示,hen1-8突變體和P1/HC-ProTu在基因表達模式上表現出相似性。基因-基因網絡分析發現76個共同基因,其中11個基因與光信號傳導相關,包括生物鐘核心組件CCA1、LHY和PRR5等,進一步揭示RNA silencing可能與其他機制的相關性。降解組分析進一步揭示了HEN1、HESO1和P1/HC-ProTu在調節RNA靜默中的複雜相互作用。本研究為理解HEN1甲基化活性在植物發育和環境適應中的分子機制提供了重要見解,且首次在體外實驗證實了AtHEN1D719N的甲基化功能喪失,並藉由基因-基因網絡分析為RNA靜默機制的研究開闢了新方向。 | zh_TW |
| dc.description.abstract | RNA silencing is a crucial regulatory mechanism for controlling gene expression, primarily mediated by small RNAs such as short interfering RNAs (siRNAs) and microRNAs (miRNAs), which regulate target mRNA cleavage or translational repression. HUA ENHANCER 1 (HEN1), functioning as a 2'-O-methyltransferase, is responsible for methylating the 3' termini of small RNAs to protect them from nuclease degradation and maintain their stability. Loss of HEN1 activity results in the production of unmethylated miRNAs, which are subsequently uridylated by HESO1 and targeted for degradation. P1/HC-ProTu, serving as a viral suppressor of RNA silencing (VSR), functions by inhibiting the methyltransferase (MTase) activity of HEN1 to bind miRNAs, thereby disrupting RNA silencing mechanisms.
This study examines the impact of HEN1 MTase activity, both in vitro and in vivo, on plant gene regulation and RNA silencing capacity. We successfully constructed inducible HESO1 transgenic plants (HA-HESO1/P1/HC-ProTu/heso1-1 and HESO1-HA/P1/HC-ProTu/heso1-1 plants) and established a foundation for further investigation of HESO1-mediated autophagic AGO1 degradation. Moreover, through in vitro methylation activity assay, we confirmed that his-AtHEN1D719N (the mutant form of AtHEN1) completely loses its ability to methylate miRNAs, directly demonstrating the critical impact of the D719N mutation on RNA silencing function. Notably, the corresponding conserved site mutation (D760N) in Marchantia polymorpha HEN1 (MpHEN1) retains partial methylation activity, revealing evolutionary differences in protein function between species. Transcriptomic analysis revealed similarities in gene expression patterns between hen1-8 mutant and P1/HC-ProTu plants. Gene-to-gene network analysis identified 76 common genes, of which 11 are associated with light signaling pathways, including core circadian clock components CCA1, LHY, and PRR5. This further reveals potential correlations between RNA silencing and other regulatory mechanisms. Degradome analysis further elucidated the complex interactions among HEN1, HESO1, and P1/HC-ProTu in the regulation of RNA silencing. This study offers valuable insights into the molecular mechanisms underlying HEN1 methylation activity in plant development and environmental adaptation. We present the first in vitro experimental evidence confirming the loss of methylation function in AtHEN1D719N and establish new research directions for RNA silencing mechanisms through gene-to-gene network analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:08:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:08:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
謝辭 II 中文摘要 III Abstract IV Table of Contents VI List of figures IX Introduction 1 Materials and methods 6 Plant material and growth conditions 6 Purification of recombinant protein 6 Western blot 8 HEN1 activity assay 8 β-elimination 9 Northern blot 9 Electrophoretic mobility shift assay (EMSA) 10 Degradome library construction and sequencing 11 Whole-transcriptome analysis 12 Results 14 Inducible HA-HESO1/P1/HC-ProTu/heso1-1 and HESO1-HA/P1/HC-ProTu/heso1-1 plants 14 D719 of HEN1 is a conserved amino acid in the MTase domain 15 Construction and purification of the HEN1 recombinant protein 16 D719N on MTase domain of AtHEN1 affects MTase activity 18 His-MpHEN1D760N retained its methylation capability 20 Comparative gene-to-gene network and transcriptome analysis 21 Degradome analysis of Col-0, hen1-8/heso1-1, P1/HC-ProTu/heso1-1, and P1/HC-ProTu/hen1-8/heso1-1 plants 25 Discussion 27 Transgenic HESO1 successes were induced in P1/HC-ProTu/heso1-1 plants 27 Species-specific effects of conserved HEN1 point mutations on RNA methylation activity 28 Evaluation of HEN1 activity and the significance of reannealing miRNA duplexes 29 Network reveals hen1-8 mutants and P1/HC-ProTu plants association with light signaling 30 Conclusion 34 Reference 35 Figures 42 | - |
| dc.language.iso | en | - |
| dc.subject | HEN1甲基轉移酶 | zh_TW |
| dc.subject | RNA 靜默 | zh_TW |
| dc.subject | 甲基化 | zh_TW |
| dc.subject | HESO1 | zh_TW |
| dc.subject | P1/HC-ProTu | zh_TW |
| dc.subject | P1/HC-ProTu | en |
| dc.subject | HESO1 | en |
| dc.subject | Methylation | en |
| dc.subject | HEN1 | en |
| dc.subject | RNA silencing | en |
| dc.title | HEN1 甲基化能力對於植物 RNA 靜默影響層次研究 | zh_TW |
| dc.title | Study on the impact of HEN1 methylation activities on RNA silencing mechanisms in planta | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳荷明;邱子珍;劉力瑜;荒木崇 | zh_TW |
| dc.contributor.oralexamcommittee | Ho-Ming Chen;Tzyy-Jen Chiou;Li-yu Daisy Liu;Takashi Araki | en |
| dc.subject.keyword | RNA 靜默,HEN1甲基轉移酶,P1/HC-ProTu,HESO1,甲基化, | zh_TW |
| dc.subject.keyword | RNA silencing,HEN1,P1/HC-ProTu,HESO1,Methylation, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202503912 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
