Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 語言學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98882
標題: 結構化與非結構化輸入於大型語言模型中之比較:以異常事件預測任務中的語意與語用預測能力評估為例
Structured vs. Unstructured Inputs in LLMs: Evaluating the Semantic and Pragmatic Predictive Power in Abnormal Event Forecasting
作者: 紀柔安
Jou-An Chi
指導教授: 謝舒凱
Shu-Kai Hsieh
關鍵字: 大型語言模型,時間知識圖譜,異常事件預測,結構化輸入,非結構化文本,語用推理,
Large Language Models,Temporal Knowledge Graph,Abnormal Event Forecasting,Structured Input,Unstructured Text,Pragmatic Reasoning,
出版年 : 2025
學位: 碩士
摘要: 大型語言模型(LLMs)近年被廣泛應用於時間知識圖譜(Temporal Knowledge Graph, TKG)預測任務中,作為傳統圖神經網路方法的泛化替代方案。特別是在異常事件預測這類仰賴時間推理與語用合理性的任務中,模型需要理解一連串行為在時間軸上的邏輯與變化,因此如何提供具備結構化時序資訊的輸入成為關鍵挑戰。然而,目前仍不清楚 LLMs 在此任務中,究竟是依賴結構化的 TKG 輸入效果較佳,或是非結構化的自然語言描述表現更好。本研究比較兩種輸入格式(TKG → Text 與 Text → Text)對於語意一致性與語用推理能力的影響。

TKG 以主詞-關係-受詞的三元組表示事件,並附有明確的時間區間,其結構化格式能提升資訊密度、降低語言歧義,並幫助模型掌握事件順序與語用邏輯,特別適合異常行為偵測等需要精確推理的任務。相對地,非結構化的自然語言輸入雖然更接近 LLM 的預訓練分布,也能提供豐富語境,但容易引入冗詞與語意聯想雜訊。

本研究實驗採用 UCA 資料集,該資料集包含具時間標註的影片說明文字與異常事件標籤,為評估語意生成與語用異常判斷能力提供了合適的實驗資料集。此研究分為兩部分進行評估。首先,使用 BGE 嵌入模型計算 LLM 預測輸出與真實描述之間的餘弦相似度。結果顯示,非結構化輸入的語意對齊表現略高(平均值 0.5978),而結構化輸入亦表現接近(平均值 0.5718),顯示即便上下文減少,TKG 輸入亦能維持語意理解能力。

第二部分實驗中,此研究將不同輸入格式作為上下文,判斷當前幀是否異常,並以 AUC 作為評估指標。結果顯示:使用 TKG 作為時間上下文可提升異常判斷準確性,AUC 分數優於原始文本與摘要文本輸入,突顯其在語用推理上的穩健性。

整體而言,非結構化輸入有利於語意連貫與表達,結構化輸入則在語用推理上展現出更高穩健性,特別是在異常事件預測這類高度仰賴時間順序與行為合理性的任務中,TKG 輸入可提供更具邏輯性的語用支撐。本研究結果突顯兩者在上下文學習(in-context learning, ICL)任務上的互補潛力,亦為未來混合式提示輸入設計提供了方向,進一步提升模型對時序事件之語用理解能力。
Large language models (LLMs) have recently been applied to temporal knowledge graph (TKG) forecasting tasks, offering a generalizable alternative to traditional graph-based approaches. Particularly in abnormal event forecasting, where temporal reasoning and pragmatic coherence are essential, models must interpret the logical sequence and behavioral dynamics of actions over time. This raises a key challenge: how to provide input representations that encode structured temporal information. However, it remains unclear whether LLMs perform better in such tasks when guided by structured TKG inputs or by unstructured natural language descriptions. This thesis compares the effectiveness of structured (TKG → Text) and unstructured (Text → Text) inputs in forecasting abnormal events, with a focus on both semantic alignment and pragmatic reasoning.

TKGs represent events using subject–relation–object triples with explicit temporal spans. This structured format provides high information density, reduces linguistic ambiguity, and facilitates reasoning over temporal and causal dependencies—features that are particularly beneficial in tasks such as abnormal event detection. In contrast, unstructured textual descriptions offer rich contextual information and better alignment with LLMs’ pretraining data, but may introduce interpretive noise due to overgeneralization.

Experiments were conducted on the UCA (UCF Crime Annotation) dataset, which contains temporally annotated video captions and ground-truth anomaly labels, serving as a suitable benchmark for evaluating both semantic generation and pragmatic anomaly detection. A two-part evaluation was performed. First, cosine similarity between the LLM-generated and ground-truth descriptions was computed using the BGE embedding model. Results show that unstructured inputs yield slightly higher semantic alignment (mean = 0.5978) compared to structured inputs (mean = 0.5718), suggesting that LLMs remain effective even with reduced contextual cues.

In the second experiment, different input formats were used as temporal context to identify abnormal video frames. Using AUC as the evaluation metric, structured TKG inputs outperformed raw and summarized text, demonstrating stronger grounding and robustness in pragmatic reasoning.

Overall, while unstructured inputs promote semantic fluency, structured representations, such as TKGs, enhance logical grounding, particularly in abnormal event forecasting tasks that rely heavily on temporal reasoning and pragmatic coherence. These findings highlight the potential of hybrid input designs—within text-based in-context learning setups—to combine structural clarity with contextual richness, enabling more accurate and pragmatically coherent reasoning in temporal event forecasting.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98882
DOI: 10.6342/NTU202504087
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-08-21
顯示於系所單位:語言學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.72 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved