請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98880完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 黃士禎 | zh_TW |
| dc.contributor.author | Shi-Zhen Huang | en |
| dc.date.accessioned | 2025-08-20T16:08:14Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | [1]“Global Offshore Wind Report 2024”, GWEC, 2024.
[2]X. S. Sun, C. B. Yao, Y. Xiong, and Q. Ye, “Numerical and experimental study on seakeeping performance of a SWATH vehicle in head waves,” Applied Ocean Research, vol. 68, pp. 262–275, 2017. [3] J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics, 4th ed. Cham: Springer International Publishing, 2020. [4] S. W. Armfield, R. Tabor, H. Jasak, and B. C. Khoo, “Open source computational fluid dynamics: Challenges and its future,” Computers & Fluids, vol. 173, pp. 274–284, 2018. [5] R. Leopold, “A new hull form for high-speed volume-limited displacement-type ships,” in Society of Naval Architects and Marine Engineers Spring Meeting, 1969. [6] B. Li, D. Qiao, W. Zhao, Z. Hu, and S. Li, “Operability analysis of SWATH as a service vessel for offshore wind turbine in the southeastern coast of China,” Ocean Engineering, vol. 251, 2022, Art. no. 111017. [7] R. B. Chapman, “Hydrodynamic drag of semi submerged ships,” Journal of Basic Engineering, vol. 94, no. 4, pp. 879–884,1972. [8] W. C. Lin, “The force and moment on a twin-hull ship in a steady potential flow,” Proc. 10th Symp. Naval Hydrodynamics, pp. 493–516, 1974. [9] D. L. Huang, “A modified method for calculating the wave resistance of SWATH ships,” Proc. Int. Symp. Practical Design of Ships and Other Floating Structures, pp. 75–78, 1985. [10] H. H. Chun, “Theoretical and Experimental Studies on the Resistance of SWATH Ships,” Ph.D. dissertation, Dept. Naval Architecture and Ocean Engineering, Univ. of Glasgow, Glasgow, U.K., 1988. [11] A. Ali, A. Maimun, and Y. M. Ahmed, “CFD application in resistance analysis for advanced semi-SWATH vehicle,” Applied Mechanics and Materials., vols. 465–466, pp. 44–49, 2013. [12] S. Brizzolara and G. Vernengo, “Automatic optimization computational method for unconventional S.W.A.T.H. ships resistance,” International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 5, pp. 882–889, 2011. [13] L. Bonfiglio, P. Perdikaris, and S. Brizzolara, “Multi-fidelity Bayesian optimization of SWATH hull forms,” Journal of Ship Research, vol. 64, no. 2, pp. 154–170, 2020. [14] S. Brizzolara, T. Curtin, M. Bovio, and G. Vernengo, “Concept design and hydrodynamic optimization of an innovative SWATH USV by CFD methods,” Ocean Dynamics, vol. 62, pp. 227–237, 2012. [15] H. An, H. Pan, and P. Yang, “CFD-based numerical study on drag reduction of ventilated supercavities combined with gas layer of the surface vehicle with struts,” Ocean Engineering, vol. 262, p. 112334, 2022. [16] C.M. Wu, “The Pontoon Design Optimization of a SWATH Vessel for Resistance Reduction,” Master’s thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, June 2023. [17] Y. Lin, Q. Yang, and G. Guan, “Automatic design optimization of SWATH applying CFD and RSM model,” Ocean Engineer, vol. 172, pp. 146–154, 2019. [18] P. Qian, H. Yi, and Y. Li, “Numerical and experimental studies on hydrodynamic performance of a small-waterplane-area-twin-hull (SWATH) vehicle with inclined struts,” Ocean Engineer., vol. 96, pp. 181–191, 2015. [19] Y. Dalgic, I. Lazakis, and O. Turan, “Investigation of Optimum Crew Transfer Vessel Fleet for Offshore Wind Farm Maintenance Operations,” Wind Engineering, vol. 39, no. 1, pp. 31–52, 2015. [20] G. Chesshire and W. D. Henshaw, “Composite overlapping meshes for the solution of partial differential equations,” European Physical Journal., vol. 90, no. 1, pp. 1–64, 1990. [21] H. Hadžić, “Development and Application of a Finite Volume Method for the Computation of Flows Around Moving Bodies on Unstructured, Overlapping Grids, Doctoral dissertation, Tech. Univ. Hamburg-Harburg, Hamburg, Germany, 2005. [22] Ö. F. Sukas, M. K. Gokce, and Ö. K. Kinaci, “Overset grid system for large ship motions inside fluid flow,” Proc. 18th Numerical Towing Tank Symposium, Cortona, pp. 1–9, 2015. [23] C. Wang, Y. Lin, Z. Hu, L. Geng, and D. Li, “Hydrodynamic analysis of a SWATH planing USV based on CFD,” Proc. OCEANS 2016, pp. 1–6, 2016. [24] E. Begovic, C. Bertorello, and S. Mancini, “Hydrodynamic performances of small size SWATH craft,” Brodogradnja, vol. 66, no. 4, pp. 1–23, 2015. [25] E. Begovic, C. Bertorello, A. Bove, and F. De Luca, “Experimental study on hydrodynamic performance of SWATH vessels in calm water and in head waves,” Applied Ocean Research., vol. 85, pp. 88–106, 2019. [26] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, 1994. [27] K. Xi, I. A. Milne, S. Draper, and L. Chen, “On the application of overset meshing to numerical studies of roll damping of hulls in complex scenarios,” Ocean Engineer., vol. 290, Art. no. 116173, 2023. [28] N. M. Newmark, “A method of computation for st ructural dynamics,” Journal of the Engineering Mechanics Division, vol. 85, no. 3, pp. 67–94, 1959. [29] OpenCFD Ltd., OpenFOAM Documentation Overview. [30] L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam,” Philos. Trans. R. Soc. Lond. Ser. A, vol. 210, pp. 307–357, 1910. [31] Wolfson Unit, “Towing Tank Tests in Support of the Design of a 26m SWATH,” University of Southampton, Southampton, UK, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98880 | - |
| dc.description.abstract | 本研究採用計算流體力學軟體OpenFOAM,預測具穩定翼小水面雙體船在靜水條件下的阻力,並著重於探討穩定翼對水動力特性的影響。本研究為了預估在達到平浮所需的穩定翼攻角,將作用於小水面雙體船的縱搖力矩拆成船殼、後穩定翼和前穩定翼三個部分的貢獻。本研究使用OpenFOAM中的OverInterDymFoam求解器,結合嵌套網格、自由液面模型和動態網格,使用SST k-ω紊流模型,剛體運動則使用Newmark方法,預測小水面雙體船在自由液面上的運動響應。計算結果顯示,透過比較不同速度的總阻力與波形特徵,證實本方法可有效預測SWATH於靜水中的航行性能。本研究首先是以固定姿態探討在不同速度下預測達成平浮姿態所需的穩定翼攻角;另外是同時考慮起伏與俯仰兩自由度,預測穩定翼對運動響應的影響。結果顯示,預測穩定翼平衡攻角時,應考慮船體對流場的影響。此外,穩定翼除能平衡縱搖並產生附加阻力外,在高速下亦會引發額外下沉力與起伏運動。固定姿態與2-DOF模擬之總阻力比較顯示,高速時若忽略姿態變化,將導致可達約15%的總阻力低估,凸顯航行姿態對總阻力預測的重要性。 | zh_TW |
| dc.description.abstract | This study utilizes OpenFOAM to simulate the resistance performance of a Small Waterplane Area Twin Hull (SWATH) vessel equipped with stabilizing fins under calm water condition. This research focuses on the vessel’s altitude contributed by the stabilizing fins. To estimate the angle of attack of the stabilizing fin required for achieving pitch equilibrium, the total pitch moment acting on the SWATH vessel is decomposed into contributions from the hull, aft fin, and fore fin. The simulations are conducted using the OverInterDyMFoam solver, incorporating overset mesh technique, free surface model, and dynamic mesh capability to predict the vessel’s hydrodynamic response in calm water. The turbulence effect is modeled using the SST k-ω turbulence model, and the rigid body motion is solved using the Newmark method. Validation results show that this approach reliably predicts SWATH performance in calm water by comparing total resistance and wave patterns at various speeds. This study performs two types of simulations. One uses a fixed attitude to assess stabilizing fin effects and estimate the attack angle for zero trim angle, and the other allows heave and pitch motions (2-DOF) to evaluate motion response. The results show that hull effects on the flow field must be considered when predicting the equilibrium angle of stabilizing fins. At high speeds, the fins not only balance pitch and add resistance but also cause extra heave force and heave motion. Comparison between fixed attitude and 2 DOF cases shows that neglecting attitude can underestimate total resistance by up to 15 %, highlighting the importance of attitude in resistance prediction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:08:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:08:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract I
摘要 II Content III Nomenclature V List of Figures X List of Tables XIII 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 2 Geometry 5 2.1 Principal Dimensions of SWATH 5 2.2 Stabilizing Fins 6 3 Pitch Moment Analysis 9 4 Flow Model 11 4.1 Governing Equations 12 4.2 Turbulence Model 13 4.3 Volume of Fluid Method 15 4.4 Overset Mesh 16 4.5 Six Degrees of Freedom Model 18 4.6 Numerical Setting 19 4.7 Computational Domain and Boundary Conditions 20 4.8 Mesh Generation 22 4.9 Surface Mesh Generation 27 4.10 Mesh Dependency 31 5 Validation 34 6 Simulation Results 40 6.1 Cases Description 40 6.2 Fixed Attitude 42 6.2.1 Prediction of α_f 42 6.2.2 Pitch Moment 43 6.2.3 Heave Force 46 6.2.4 Resistance Prediction 47 6.2.5 Flow Fleid 49 6.2.6 Wake Field 56 6.3 Free Motion 59 6.3.1 Resistance Prediction 59 6.3.2 Comparison of Resistance 62 7 Conclusion 64 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | OpenFOAM | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 嵌套網格 | zh_TW |
| dc.subject | 穩定翼 | zh_TW |
| dc.subject | 小水面雙體船 | zh_TW |
| dc.subject | Small Waterplane Area Twin Hull (SWATH) | en |
| dc.subject | Stabilizing Fin | en |
| dc.subject | Overset Mesh | en |
| dc.subject | OpenFOAM | en |
| dc.subject | Computational Fluid Dynamic (CFD) | en |
| dc.title | 使用 OpenFOAM 嵌套網格技術模擬具穩定翼SWATH船形靜水航行性能預測 | zh_TW |
| dc.title | Prediction of Calm Water Performance for a SWATH Hull with Stabilizing Fins Using Overset Mesh Technique in OpenFOAM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗岳;劉宗龍;高瑞祥;吳炳承;許家豪 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Yueh Lin;Tsung-Lung Liu;Jui-Hsiang Kao;Ping-Chen Wu;Chia-Hao Hsu | en |
| dc.subject.keyword | 計算流體力學,OpenFOAM,小水面雙體船,穩定翼,嵌套網格, | zh_TW |
| dc.subject.keyword | Computational Fluid Dynamic (CFD),OpenFOAM,Small Waterplane Area Twin Hull (SWATH),Stabilizing Fin,Overset Mesh, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202503547 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 13.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
