Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益zh_TW
dc.contributor.advisorRay-I Changen
dc.contributor.author何宜臻zh_TW
dc.contributor.authorYi-Jen Hoen
dc.date.accessioned2025-08-19T16:29:17Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] P. Hofmann and D. Woods, "Cloud Computing: The Limits of Public Clouds for Business Applications," IEEE Internet Computing, vol. 14, no. 6, pp. 90-93, 2010, doi: 10.1109/MIC.2010.136.
[2] K. Choi, J. Yi, C. Park, and S. Yoon, "Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines," IEEE Access, vol. 9, pp. 120043-120065, 2021, doi: 10.1109/ACCESS.2021.3107975.
[3] P. Dimitrov and M. Alexandrova, "From Automation Pyramid to Industry 4.0: Transitioning Process and Practical Applications," in 2024 International Conference Automatics and Informatics (ICAI), 10-12 Oct. 2024 2024, pp. 71-75, doi: 10.1109/ICAI63388.2024.10851506.
[4] J. Lee, B. Bagheri, and H.-A. Kao, "A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems," Manufacturing Letters, vol. 3, pp. 18-23, 2015/01/01/ 2015, doi: https://doi.org/10.1016/j.mfglet.2014.12.001.
[5] R.-I. Chang and P.-Y. Hsiao, "Unsupervised query-based learning of neural networks using selective-attention and self-regulation," IEEE Transactions on Neural Networks, vol. 8, no. 2, pp. 205-217, 1997.
[6] R. I. Chang, H. M. Hsu, S. Y. Lin, C. C. Chang, and J. M. Ho, "Query-Based Learning for Dynamic Particle Swarm Optimization," IEEE Access, vol. 5, pp. 7648-7658, 2017, doi: 10.1109/ACCESS.2017.2694843.
[7] H.-M. Hsu, X. Yuan, Y.-Y. Chuang, W. Sun, and R.-I. Chang, "Query-Based Multiview Detection for Multiple Visual Sensor Networks," Sensors, vol. 24, no. 15, p. 4773, 2024. [Online]. Available: https://www.mdpi.com/1424-8220/24/15/4773.
[8] L.-B. Lai, R.-I. Chang, and J.-S. Kouh, "Detecting network intrusions using signal processing with query-based sampling filter," EURASIP Journal on Advances in Signal Processing, vol. 2009, pp. 1-8, 2008.
[9] R.-I. Chang, C.-C. Huang, L.-B. Lai, and C.-Y. Lee, "Query-Based Machine Learning Model for Data Analysis of Infrasonic Signals in Wireless Sensor Networks," presented at the Proceedings of the 2nd International Conference on Digital Signal Processing, Tokyo, Japan, 2018. [Online]. Available: https://doi.org/10.1145/3193025.3193031.
[10] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, "Autoencoder-based network anomaly detection," in 2018 Wireless Telecommunications Symposium (WTS), 17-20 April 2018 2018, pp. 1-5, doi: 10.1109/WTS.2018.8363930.
[11] J. An and S. Cho, "Variational autoencoder based anomaly detection using reconstruction probability," Special lecture on IE, vol. 2, no. 1, pp. 1-18, 2015.
[12] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, "Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT," Sensors, vol. 17, no. 9, p. 1967, 2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/9/1967.
[13] N. G. Larrakoetxea, J. E. Astobiza, I. P. López, B. S. Urquijo, J. G. Barruetabeńa, and A. Z. Rego, "Efficient Machine Learning on Edge Computing Through Data Compression Techniques," IEEE Access, vol. 11, pp. 31676-31685, 2023, doi: 10.1109/ACCESS.2023.3263391.
[14] L. Deri, S. Mainardi, and F. Fusco, "tsdb: A Compressed Database for Time Series," in Traffic Monitoring and Analysis, Berlin, Heidelberg, A. Pescapè, L. Salgarelli, and X. Dimitropoulos, Eds., 2012// 2012: Springer Berlin Heidelberg, pp. 143-156.
[15] B. Shah, P. M. Jat, and K. Sashidhar, "Performance Study of Time Series Databases," arXiv preprint arXiv:2208.13982, 2022.
[16] I. InfluxData. "InfluxDB OSS v2 Documentation." https://docs.influxdata.com/influxdb/v2/ (accessed Apr., 2025).
[17] N. Laptev, S. Amizadeh, and Y. Billawala, "Yahoo anomaly detection dataset s5," URL http://webscope.sandbox.yahoo. com/catalog. php, 2015.
[18] T. Hagemann and K. Katsarou, "Reconstruction-based anomaly detection for the cloud: A comparison on the yahoo! webscope s5 dataset," in Proceedings of the 2020 4th International Conference on Cloud and Big Data Computing, 2020, pp. 68-75.
[19] M. Thill, W. Konen, and T. Bäck, "Online anomaly detection on the webscope S5 dataset: A comparative study," in 2017 Evolving and Adaptive Intelligent Systems (EAIS), 2017: IEEE, pp. 1-8.
[20] H. Yuan, S. Wang, J. Bi, and J. Zhang, "Deep and Spatio-Temporal Detection for Abnormal Traffic in Cloud Data Centers," in 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1-4 Oct. 2023 2023, pp. 4985-4990, doi: 10.1109/SMC53992.2023.10393988.
[21] T.-Y. Kim and S.-B. Cho, "Web traffic anomaly detection using C-LSTM neural networks," Expert Systems with Applications, vol. 106, pp. 66-76, 2018/09/15/ 2018, doi: https://doi.org/10.1016/j.eswa.2018.04.004.
[22] H. Yuan, S. Wang, J. Bi, J. Zhang, and M. Zhou, "Hybrid and Spatiotemporal Detection of Cyberattack Network Traffic in Cloud Data Centers," IEEE Internet of Things Journal, vol. 11, no. 10, pp. 18035-18046, 2024, doi: 10.1109/JIOT.2024.3360294.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98862-
dc.description.abstract工業4.0推動製造業邁向數位化與智慧化,藉由虛實整合系統(Cyber-Physical Systems, CPS)、物聯網(Internet of Things, IoT)、人工智慧(AI)與邊緣計算(Edge Computing)等技術的整合,建立具即時感知與自主決策能力的智慧工廠。隨著工廠中感測裝置的大量部署,其所產生之大量高頻時間序列資料,成為設備狀態監控、品質管理、異常偵測與預測性維護的重要依據。然而,工業用戶對於將敏感資料上傳至公有雲進行分析存有疑慮,亦難以因應工業用戶對自主部署與彈性調整之實務需求。為解決上述問題,本研究基於機器學習技術,設計一套可部署於企業內部之工業物聯網系統。本研究包含以下三項貢獻:一、建構支援時間序列資料存取及異常偵測之工業物聯網平臺;二、提出結合詢問式學習之條件式變分自動編碼器的異常偵測方法,透過針對較具學習意義的高度不確定性樣本微調模型,標記數據需求量減少54.50%,微調時間縮短53.74%,同時模型效能平均提升1.43%;三、支援使用壓縮資料直接進行異常分析,免除資料還原步驟,提升傳輸效率並降低系統儲存與運算的負擔。zh_TW
dc.description.abstractIndustry 4.0 is propelling manufacturing toward digitalization and intelligence by integrating Cyber‑Physical Systems (CPS), the Internet of Things (IoT), Artificial Intelligence (AI), and edge computing, thus enabling smart factories with real‑time perception and autonomous decision‑making. The extensive deployment of sensors generates massive high‑frequency time‑series data that underpin equipment condition monitoring, quality control, anomaly detection, and predictive maintenance. Nevertheless, manufacturers hesitate to upload sensitive data to public clouds for analysis and struggle to satisfy practical needs for self‑hosted, easily reconfigurable deployments. To address these challenges, this study designs an on-premises Industrial IoT (IIoT) platform based on machine learning techniques. This study makes three contributions: (1) Establishing an IIoT platform that supports time series data access and anomaly detection; (2) Proposing an anomaly detection method that combines Query-based Learning with a Conditional Variational Autoencoder. By fine-tuning the model using highly uncertain samples that are more informative for learning, the approach reduces the required amount of labeled data by 54.50%, shortens fine-tuning time by 53.74%, and improves model performance by an average of 1.43%; and (3) Supporting anomaly analysis directly on compressed data, eliminating the need for decompression and thereby improving transmission efficiency and reducing system storage and computational overhead.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:29:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:29:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
目次 V
圖次 VII
表次 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
第二章 文獻探討 4
2.1 工業製造之資訊系統 4
2.2 詢問式學習 5
2.3 異常偵測方法 6
2.3.1 自動編碼器 6
2.3.2 變分自動編碼器 6
2.3.3 條件式變分自動編碼器 7
2.4 壓縮方法 8
第三章 系統設計與流程 10
3.1 系統架構 10
3.2 資料傳輸模組 11
3.3 資料儲存模組 12
3.4 資料視覺化模組 13
3.5 異常偵測模組 14
第四章 研究方法與實驗結果 15
4.1 資料集 15
4.2 資料前處理 15
4.2.1 標準化 15
4.2.2 滾動視窗特徵選取 16
4.3 資料壓縮模型 17
4.4 異常偵測模型訓練 18
4.5 實驗結果 20
4.5.1 實驗評估 20
4.5.2 異常偵測實驗結果分析 25
第五章 結論與未來展望 28
5.1 結論 28
5.2 未來展望 29
參考文獻 30
-
dc.language.isozh_TW-
dc.subject工業4.0zh_TW
dc.subject時間序列zh_TW
dc.subject異常偵測zh_TW
dc.subject詢問式學習zh_TW
dc.subject機器學習zh_TW
dc.subjectTime Seriesen
dc.subjectAnomaly Detectionen
dc.subjectIndustry 4.0en
dc.subjectMachine Learningen
dc.subjectQuery-based Learningen
dc.title工業物聯網之時間序列資料管理與詢問式異常偵測zh_TW
dc.titleTime Series Data Management and Query-Based Anomaly Detection for Industrial Internet of Thingsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張恆華;林書宇zh_TW
dc.contributor.oralexamcommitteeHerng-Hua Chang;Shu-Yu Linen
dc.subject.keyword工業4.0,時間序列,異常偵測,詢問式學習,機器學習,zh_TW
dc.subject.keywordAnomaly Detection,Industry 4.0,Machine Learning,Query-based Learning,Time Series,en
dc.relation.page31-
dc.identifier.doi10.6342/NTU202503553-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved