Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9883
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任立中(Li-Chung Jen)
dc.contributor.authorWan-Ling Chenen
dc.contributor.author陳宛伶zh_TW
dc.date.accessioned2021-05-20T20:47:12Z-
dc.date.available2008-07-11
dc.date.available2021-05-20T20:47:12Z-
dc.date.copyright2008-07-11
dc.date.issued2008
dc.date.submitted2008-07-07
dc.identifier.citation一、中文部分
1.Brian Spengler著(姜怡如譯)(1999),1999年度台灣業者之顧客關係管理應用現狀調查,電子化企業經理人報告,11月份,第三期,第9-15頁
2.Peppers & Rogers著(謝晶瑩譯)(1995),1:1行銷,台北:時報出版
3.Peter Drucker著(周文祥,詹文明,江政達譯)(1954),管理的實務,第一版,台北:中天出版
4.Philip Kotler著(方世榮譯)(2000),行銷學原理,第十版,東華書局。
5.王治平,客觀行為與主觀認知在新產品推薦系統之比較,國立台灣大學國際企業研究所碩士論文,民國92年6月
6.邵功新,資料庫行銷之客製化新產品推薦系統,國立台灣大學國際企業研究所碩士論文,民國92年6月
7.陳成業,資料庫行銷之品牌選擇模式之研究,國立台灣大學國際企業研究所碩士論文,民國91年6月
8.楊昌憲,資料庫行銷之新產品推薦系統:以3C家電業為例,國立台灣大學國際企業研究所碩士論文,民國91年6月
二、英文部分
1.Allenby, G.M. and Rossi, P.E. (1998), “Marketing Models of Consumer Heterogeneity”, Journal of Econometrics, 89,57-78
2.Ansari; Essegaier, S.and Kohli, R. (2000), “Internet Recommendation Systems”, Journal of Marketing Research, 37(3),363-375
3.Battista, P. and Verhun, D. (2000), “Customer Relationship Management: The Promise and the Reality”, CMA Management, 74(4), 34-37
4.Berson, A.; Smith, S. and Thearling, K.(1999), Building data mining applications for CRM , New York, NY, McGraw-Hill
5.Blattberg, R. and Neslin S.A. (1990), “Sales Promotion-Concepts, Methods, and Strategies, ” Prentice- Hall Inc. NJ
6.Chevalier, J.A. and Mayzlin, D. (2006), “The Effect of Word of Mouth on Sale: Online Book Reviews”, Journal of Marketing Research,43(3),345-354
7.Cramer, J.S. (2003). Logit Models from Economics and Other Fields, Cambridge University Press, Cambridge .
8.Danaher P.J. ; Mullarkey G.W. and Essegaier S. (2006), “Factors Affecting Website Visit Duration: A Cross-Domain Analysis”, Journal of Marketing Research, 43(2),182-194
9.Davids, M.(1999), “How to avoid the 10 biggest mistakes in CRM”, The Journal of Business Strategy; Nov/Dec 20, 6, 22
10.DeMaris, A. (1992), “Logit modeling: Practical applications. Newbury Park,” CA: Sage Publications.
11.Fletcher, K.; Wright, G. and Desai, C. (1996), “The Role of Organizational Factors in the Adoption and Sophistication of Database Marketing in the UK Financial Services Industry”, Journal of Direct Marketing, 10(1), 10-21.
12.Gale, Bradley T. (1994), Managing customer value : creating quality and service that customers can see, New York : Maxwell Macmillan International
13.Garfinkel, R.; Gopal, R.; Pathak, B.; Venkatesan, R. and Fang, Y.(2007), Empirical Analysis of the Business Value of Recommender Systems, working paper
14.Glazer, R. (1997), “Strategy and Structure in Information-Intensive Markets: The Relationship Between Marketing and IT,” Journal of Market Focused Management, 2 (1), 65–81.
15.Gordon, I. (1999). Relationship Marketing: New Strategies, Techniques and Technologies to Win the Customers You Want and Keep Them Forever. John Wiley and Sons Publishers, 336.
16.Grayson, K. (2007), “Friendship Versus Business in Marketing Relationships”, Journal of Marketing, 71(4), 121-139
17.Green, P.E.; Srinivasan, V. (1978), “Conjoint Analysis in Consumer Research: Issue and Outlook,” Journal of Consumer Marketing, 5,103-123
18.Gupta, S. (1988), ”Impact Of Sales Promotions On When, What, and How Much To Buy,” Journal of Marketing Research, 25 (4), 342-355
19.Horne, D.A.; Horne, D.R.(2002), “Database marketing: When does good practice become an invasion of privacy?” American Marketing Association. Conference Proceedings; 13, 480-486
20.Hughes, Arthur M. (2000),“Strategic Database Marketing-The Master plan for Starting and Managing a Profitable, Customer-Based Marketing Program.” McGraw-Hill Professional Publishing; 2nd Ed.
21.Jackson, R. and Wang, P. (1994), Strategic Database Marketing , NTC Business Book. 11, Lincolnwood
22.Kalakota, R. (1999), e-Business: Roadmap for Success , Addison-Wesley Longman, USA
23.Kim, B. D. & Kim, S.O. (2001), “A new recommender system to combine content-based and collaborative filtering systems”, Journal of Database Marketing, 8(3), 244-252
24.Lenk, P. (2001), Bayesian Inference and Markov Chain Monte Carlo, Bayesian Applications and Methods in Marketing Conference and Tutorial
25.Linden, G.; Smith, B. and York J. (2003), “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, IEEE Internet Computing, Jan/Feb, 76-80
26.Montgomery, A. L.; Li, S.; Srinivasan, K.; Liechty, J.C. (2004), “Modeling Online Browsing and Path Analysis Using Clickstream Data”, Marketing Science, 23(4), 579-595
27.Morris, T. (1994), “Customer Relationship Management”, CMA magazine,68(7), 22-25
28.Newell, F. (1997), The New Rules of Marketing: how to use one –on –one relationship marketing to be the leader in your industry, New York: McGraw-Hill, Inc.
29.Parvatiyar, A. and Sheth, J.N. (2001), “Conceptual Framework of Customer Relationship Management,” in Customer Relationship Management—Emerging Concepts, Tools and Applications, eds. New Delhi, India: Tata/McGraw-Hill, 3–25.
30.Payne, A. and Frow, P. (2005), “A Strategic Framework for Customer Relationship Management”, Journal of Marketing, 69(4), 167-176.
31.Reichheld, F.F. and Sasser, W. E. Jr. (1990), “Zero Defection: Quality Comes to Services”, Harvard Business Review, 68(3), 105-111
32.Schuster, Camille (2005), “Customer Relationship Management Can Work for You, But Is It?”, Business Credit, 107(4), 65-66
33.Shani, D. and Chalasani, S. (1993), ”Exploiting Niches Using Relationship Marketing,” Journal of Business & Industrial Marketing, 8 (4),58-66
34.Shaw, R. and Stone, M. (1990), Database Marketing : Strategy and Implement, New York :John Wiley & Sons
35.Srinivasan, R. and Moorman, C. (2005), “ Strategic Firm Commitments and Rewards for Customer Relationship Management in Online Retailing”, Journal of Marketing, 69(4), 193-200.
36.Stone, M. and Woodcock, N. (2001), “Defining CRM and Assessing its Quality,” in Successful Customer Relationship Marketing, Brian Foss and Merlin Stone, eds. London: Kogan, 3–20.
37.Winer, R. (2001), “A Framework for Customer Relationship Management”, California Management Review, 43(4), 89-105
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9883-
dc.description.abstract本研究是以資料庫行銷的技術來剖析每一位顧客的真實消費狀況,利用顧客過去的交易紀錄,來推測其未來的購買行為,同時導入顧客推薦系統的概念,將顧客視為有不同偏好的獨立個體,分別推薦顧客不同的產品,以期能為企業贏得最大的利潤。
全文通篇將資料庫內所有的顧客劃分為兩群組:第一群顧客是交易紀錄超過一筆,顯示為曾經重複購買者,被視為「舊顧客」;第二群顧客是僅有一筆紀錄,則視其為「新顧客」。從舊顧客的資料中個別挑選出最近期的一次紀錄,作為樣本內估計顧客購買偏好,及分析顧客購買行為的依據;剩餘的所有資料則分別用以預測舊顧客與新顧客的購買機率。一但了解顧客的購買偏好與發生交易的機率後,便可以對顧客進行最直接的產品推薦。
首先由顧客最初的購買行為之需求端切入,將顧客的購買偏好依照相異程度的不同,導入統計方法來分析,並且估計顧客購買偏好,來預測顧客下一次的購買;若預測顧客應該會購買,而資料顯示顧客確實有購買紀錄時,則謂之「擊中」。而後便比較此三種不同的新產品推薦模式,以累積擊中率來判斷其模式的優劣,分別包含平均機率法推薦模式、總合邏吉斯推薦模式,以及在行銷理論模型中,充分展現預測效果最佳的層級貝氏邏吉斯推薦模式。
最終實證後所得出的結論顯示,層級貝氏邏吉斯推薦模式的表現的確最好,但是仍有些許外在因素干擾其預測結果,倘若加以改善則可擁有更好的預測能力。本研究逐一針對各推薦模式的實證結果給予正反向評判,期望能由顧客關係管理中精準的資料庫行銷技術當作指引,一方面提供顧客客製化的推薦服務等,另一方面則帶領企業獲得顧客的終身價值,協助企業帶來更大的商機,創造買賣雙贏的局面。
zh_TW
dc.description.abstractIt’s getting obvious that customer relationship management could be viewed as a lethal weapon. To give the customers exactly what they want in affordable price can easily enhance the customer satisfaction. And this study is based on database marketing techniques, which is the key point of CRM, to analyze each customer’s purchasing behavior. By examining the transaction records, we’ll predict each customer’s next purchasing behavior, and apply the concept of customer recommendation systems to customize their recommended products. We believe that with one strong and precise recommendation system, we could encourage cross-buying, develop customer loyalty, and finally improve the customer retention, which would lead to great profits.
In this research, we hold two purposes, one is to find out the online books buying preference, the other is to compare the different kinds of recommendation systems. We separate all customers into two groups by their repetitive purchasing in turn representing“Old Customers” and “New Customers”. Later we try three types of statistical models, “the Common Average Method”, “the Aggregate Logit Recommendation System”, and the “Hierarchical Bayesian Logit Recommendation System”, and see which one of them can perform the best in the accumulated hit ratio for predicting customers purchasing possibilities.
The study result shows several buying habits on different cluster of customers, for example, people with only high school educational backgrounds prefer buying “Business and Finance” to “Lifestyle” types of books, they would like to buy books that are thicker, and so on. In addition to the purchasing behavior, we also found that Hierarchical Bayesian Logit Recommendation System do the best prediction, just like the Hierarchical Bayes theory proposed, no matter for old customers or new customers. It’s is quite evident that more and more customers now they share heterogeneity needs,. In that, to best serve all individual’s need, the company better keep on customizing the recommendation system.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:47:12Z (GMT). No. of bitstreams: 1
ntu-97-R95724049-1.pdf: 2417961 bytes, checksum: 1e428d58598127b5ae688e9e6916653a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents謝詞 ……………………………………………………… i
中文摘要…………………………………………………... ii
英文摘要…………………………………………………... iii
目錄 ……………………………………………………… v
圖次 ……………………………………………………… vii
表次 ……………………………………………………… viii
第一章 緒論………………………………………………… 1
第一節 研究背景與動機…………………………… 3
第二節 研究目的…………………………………… 6 第三節 研究範圍…………………………………… 7
第四節 論文架構…………………………………… 7
第五節 研究流程…………………………………… 8
第二章 文獻探討…………………………………………… 9
第一節 顧客關係管理……………………………… 9
第二節 顧客推薦系統……………………………… 20
第三節 隨機品牌選擇模式………………………… 24
第三章 研究方法…………………………………………… 29
第一節 研究架構…………………………………… 29
第二節 研究設計…………………………………… 30
第三節 邏吉斯產品選擇模型……………………… 39
第四節 層級貝氏統計模型………………………… 42
第五節 層級貝氏邏吉斯模型……………………… 49
第四章 實證分析…………………………………………… 57
第一節 樣本描述…………………………………… 57
第二節 無任何資訊下之推薦系統………………… 64
第三節 總合邏吉斯模型分析……………………… 67
第四節 建立線上推薦系統………………………… 76
第五章 結論與建議………………………………………… 89
第一節 研究發現…………………………………… 89
第二節 策略意涵…………………………………… 93
第三節 研究限制與未來建議……………………… 95
參考文獻 ……………………………………………………… 97
dc.language.isozh-TW
dc.title線上新產品推薦系統-以亞馬遜網路書店為例zh_TW
dc.titleInternet Recommendation System-Take Amazon.com as an Exampleen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳厚銘(Ho-Min Chen),謝明慧(Ming-Huei Hsieh)
dc.subject.keyword資料庫行銷,顧客推薦系統,層級貝氏模式,亞馬遜網路書店,zh_TW
dc.subject.keywordCusomer Relationship Management,Database Marketing,Internet Recommendation systems,Hierarchical Bayes Model,Amazon.com,en
dc.relation.page99
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-07
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf2.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved