Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorCheng-Hua Linen
dc.contributor.author林振華zh_TW
dc.date.accessioned2021-05-20T20:47:04Z-
dc.date.available2008-07-21
dc.date.available2021-05-20T20:47:04Z-
dc.date.copyright2008-07-21
dc.date.issued2008
dc.date.submitted2008-07-08
dc.identifier.citationChapter 1
1. Y. Xin, P. Yang, Y. Sun, Y. Wu, B. MAyers. B. Gates, Y.Yin, F. Kim, and H. Yan, Adv. Mater. (Weinheim, Ger.) 15, 353(2003).
2. S. Iijima, Nature 354, 56 (1991).
3. D. P. Yu, Z. G. Bai, S. Q. Feng, C. S. Lee, I. Bello, X. S. Sun, Y. H. Ang, G. W. Zhou, Z. Zhang, Solid State Commun. 105, 403 (1998).
4. H. Morkoc, S. N. Mohammad, Science 267, 51 (1995).
5. E. J. Lerner, Ind. Phys. 7, 10 (2001).
6. S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, Appl. Phys. Lett. 88, 183112 (2006)
7. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, J. Appl. Phys. 98, 124303 (2005).
8. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yanga, J. Appl. Phys. 98, 073520 (2005).
9. F. Hernandez-Ramirez, S. Barth, A. Tarancon, O. Casals, E. Pellicer, J. Rodriguez, A. Romano- Rodriguez, J. R. Morante, and S. Mathur, Nanotechnology, 18, 424016 (2007).
10. G. Vilaca, B. Jousseaume, C. Mahieux, C, Belin, H. Cachet, M. Bernard, V. Vivier, and T. Toupance, Adv. Mater. (Weinheim, Ger.) 18, 1073 (2006).
11. R. Liu. Y. Chen, F. Wang, L. Cao, A, Pan, G, Yang, T. Wang, and B. Zou, Physica E, 39, 223 (2007).
12. Z. Liu, D.Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 20 (2003).
page 6,7

Chapter 3
1. A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. (Weinheim, Ger.) 10, 859 (1998).
2. Y. Liu, C. Zheng, W. Wang, C. Yin, and G. Wang, Adv. Mater. (Weinheim, Ger.) 13, 1883 (2001).
3. S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, Appl. Phys. Lett. 88, 183112 (2006).
4. B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, J. Appl. Phys. 98, 124303 (2005).
5. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, J. Appl. Phys. 98, 073520 (2005).
6. S. Das, S. Kar, and S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006).
7. L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, Appl. Phys. Lett. 88, 263102 (2006).
8. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, Appl. Phys. Lett. 91, 133110 (2007).
9. S. Choudhury, C. A. Betty, K. G. Girjia, and S. K. Kulshreshtha, Appl. Phys. Lett. 89, 071914 (2006).
10. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 123117 (2005).
11. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 1754 (2003).
12. F. Hernandez-Ramirez, A. Tarancon, O. Casals, E. Pellicer, J. Rodriguez, J. R. Morante, S. Barth, and S. Mathur, Phys. Rev. B 76, 085429 (2007).
13. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007).
14. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Härle, Appl. Phys. Lett. 69, 26 (1996).
15. E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 71, 870 (1997).
16. Y. Wang, I. Ramos, and J. J. Santiago-Aviles, J. Appl. Phys. 102, 093517 (2007)
17. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, Semicond. Sci. Technol. 13, 563 (1998).
18. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, Appl. Phys. Lett. 89, 213109 (2006).
19 R. H. Bube, Photoelectronics Properties of Semiconductors, (Cambridge, “New York, 1992), Chap. 2, pp. 21-30.
page 44,45
Chapter 4
1. S. Dmitriev, Y. Lilach, Bradly. Button, M. Moskovits, and A. Kolmakov, Nanotechnology, 18, 055707 (2007).
2. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, Adv. Mater. (Weinheim, Ger.) 15, 1754 (2003).
3. Y. Liu, C. Zheng, W. Wang, C. Yin, and G. Wang, Adv. Mater. (Weinheim, Ger.) 13, 1883 (2001).
4. B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, J. Appl. Phys. 98, 124303 (2005).
5. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, J. Appl. Phys. 98, 073520 (2005).
6. S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, Appl. Phys. Lett. 88, 183112 (2006).
7. L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, Appl. Phys. Lett. 88, 263102 (2006).
8. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, Appl. Phys. Lett. 91, 133110 (2007).
9. S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, Appl. Phys. Lett. 89, 071914 (2006).
10. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano. Lett. 5, 667 (2005).
11. X. H. Chen, and M. Moskovits, Nano. Lett. 7, 807 (2007).
12. F. Hernandez-Ramirez, A.Tarancon, O. Casals, E. Pellicer, J. Rodriguez, J. R. Morante, S. Barth, and S. Mathur, Phys. Rev. B 76, 085429 (2007).
13. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, Appl. Phys. Lett. 91, 223106 (2007).
14. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, Appl. Phys. Lett. 89, 213109 (2006).
15. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, Semicond. Sci. Technol. 13, 563 (1998).
page 58,59
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9881-
dc.description.abstract我們主要研究了二氧化錫一維奈米線 (nanowire) 的光導特性。二氧化錫(SnO2) 在奈米尺寸下擁有較高的表面積對體積比 (surface-to-volume ratio),大幅增加了對光的靈敏度及吸收率。然而表面複雜的能態卻會對光導造成巨大的影響。
我們將會報告由氣液固相製程所生成的SnO2奈米線在紫外光波段擁有高效率的光轉電的能力。而以往所討論主宰SnO2光導機制都只著重在表面氧分子吸附的電洞攫取,而忽略了因為能帶彎曲導致的電子電洞對分離所貢獻的光電流。而在真空時,由於氧分子吸附能力的降低,大大增長了電子電洞對存活的時間,進而大幅增加了光導率。
我們也參考了利用金屬粒子修飾增加SnO2奈米線偵測活躍氣體靈敏度的模型來增加光導率。利用金屬粒子在SnO2奈米線上形成蕭基屏障 (Schottky barrier)增加能帶彎曲導致電子電洞對分離的效果更為顯著,有效增長電子電洞的生命期(lifetime) 進而增加SnO2奈米線的光導率。
zh_TW
dc.description.abstractIn this thesis, the photocurrent of one-dimensional tin dioxide nanowires has been carefully measured. The mechanism responsible for photocurrent is explicated here and an alternative route to enhance photocurrent is investigated, too. They are presented as follows.
I. High photocurrent gain in SnO2 nanowires
Unlike previous reports, the responsible mechanism of photocurrent in metal oxide nanostructures, always emphasize on the carrier trapping of charged oxygen molecules. Here we point out that space charges induced by surface defects does play a significant role, especially, for nanostructured materials with a large surface to volume ratio. The huge photoresponse gain with a value of about one hundred thousand detected in vacuum represents an outstanding example to illustrate out proposed mechanism. The study shown here provides a useful guideline to achieve photodetectors based on nanostructured materials with high sensitivity.
II. Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration
It is found the sensitivity of photoresponse of SnO2 nanowires can be enhanced by metallic decoration. The underlying mechanism is attributed to the formation of the Schottky junction on the nanowires surface in the vicinity of metallic nanoparticles. The increment in the barrier height and width of space charge region due to the existence of Schottky junctions increases the surface electric field and enhances the spatial separation effect, which then prolongs the lifetime of photoinduced electron and consequently increases the gain. The results shown here provide an alternative way for enhancing the photoresponse of semiconductor nanostructures, which should be useful for creating highly sensitive photodetectors.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:47:04Z (GMT). No. of bitstreams: 1
ntu-97-R95222034-1.pdf: 5709256 bytes, checksum: d2ee2e430719d086be3064dfca1c6b8d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要………………………………………………………………………...……..…III
Abstract……………………………………………………………………..…...….IV
List of figures………………………………………………………………..……...VI
1. Introduction………………………………...…………………………………….1
1-1 Introduction to Nanotechnology……………………………………...…….....1
1-2 Introduction to SnO2 material………………………………………………....2
1-3 Photoconductivity……………………………………………………………..3
References………………………………………………………………………....6
2. Experimental instruments and details…………………………….…….….…..8
2-1 Scanning Electron Microscope………………………………………...….…..8
2-2 X-ray Diffraction………………………………………………….…..……...12
2-3 Raman Scattering…………………………………………………..…….......13
2-3-1 Stokes shift and Anti Stokes shift……………………………..…….14
2-3-2 Raman Scattering Apparatus………………………………..……….17
2-4 Experimental details and setups………………………………………..…….20
2-4-1 Synthesization of SnO2 nanowires ………………………..………..20
2-4-2 Fabrication of SnO2 nanowires device……………………………...21
2-4-3 Two terminal I-V measurement……………………………………..22
2-4-4 Photoconductivity measurement in air and in vacuum………….…..22
2-5 Sputtering metallic nanoparticles……………………………….…………..23
3. High photocurrent gain in SnO2 nanowires…………………………………31
3-1 Introduction…………………………………………………………………31
3-2 Results and Discussion……………………………………………………..32
3-3 Summary……………………………………………………………………43
References………………………………………………………………………44
4. Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration………………………………………………………………………..46
4-1 Introduction…………………………………………………………………46
4-2 Results and Discussion…………………………………………………......47
4-3 Summary……………………………………………………………………57
References………………………………………………………………………58
5. Conclusion.……………………………………………………………………...60
dc.language.isoen
dc.title一維奈米結構之二氧化錫的光導特性zh_TW
dc.titlePhotocurrent of One-Dimensional SnO2 Nanowiresen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su),林泰源(Tai-Yuan Lin)
dc.subject.keyword二氧化錫,奈米線,光電流,光導,金屬修飾,zh_TW
dc.subject.keywordSnO2,nanowires,photocurrent,photoconductance,metal decoration,en
dc.relation.page62
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf5.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved