Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-hui Hsuen
dc.contributor.author王智雍zh_TW
dc.contributor.authorZhi-Yong Wangen
dc.date.accessioned2025-08-19T16:18:49Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] A. Pandey, "Pharmaceutical and biomedical applications of cellulose nanofibers: a review," Environmental Chemistry Letters, vol. 19, no. 3, pp. 2043-2055, 2021/06/01 2021, doi: 10.1007/s10311-021-01182-2.
[2] S. Xie, X. Zhang, M. P. Walcott, and H. Lin, "Applications of Cellulose Nanocrystals: A Review," Engineered Science, vol. 2, pp. 4-16, 2018, doi: 10.30919/es.1803302.
[3] R. R et al., "Bacterial nanocellulose: engineering, production, and applications," (in eng), no. 2165-5987 (Electronic).
[4] D. Trache et al., "Nanocellulose: From Fundamentals to Advanced Applications," (in English), Frontiers in Chemistry, Review vol. 8, 2020-May-06 2020, doi: 10.3389/fchem.2020.00392.
[5] A. Dufresne, "Nanocellulose Processing Properties and Potential Applications," Current Forestry Reports, vol. 5, no. 2, pp. 76-89, 2019/06/01 2019, doi: 10.1007/s40725-019-00088-1.
[6] R. Reshmy et al., "Nanocellulose-based products for sustainable applications-recent trends and possibilities," Reviews in Environmental Science and Bio/Technology, vol. 19, no. 4, pp. 779-806, 2020/12/01 2020, doi: 10.1007/s11157-020-09551-z.
[7] K.-C. Cheng, C.-F. Huang, Y. Wei, and S.-h. Hsu, "Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects," NPG Asia Materials, vol. 11, no. 1, p. 25, 2019/06/07 2019, doi: 10.1038/s41427-019-0124-z.
[8] L. J. R. Foster, S. Ho, J. Hook, M. Basuki, and H. Marcal, "Chitosan as a biomaterial: Influence of degree of deacetylation on its physiochemical, material and biological properties," PloS one, vol. 10, no. 8, p. e0135153, 2015.
[9] R. Czechowska-Biskup, D. Jarosińska, B. Rokita, P. Ulański, and J. M. Rosiak, "Determination of degree of deacetylation of chitosan-comparision of methods," Progress on Chemistry and Application of Chitin and its Derivatives, no. 17, pp. 5-20, 2012.
[10] T. A. Khan, K. K. Peh, and H. S. Ch’ng, "Reporting degree of deacetylation values of chitosan: the influence of analytical methods," J. Pharm. Pharm. Sci, vol. 5, no. 3, pp. 205-212, 2002.
[11] M. Rhazi, J. Desbrieres, A. Tolaimate, A. Alagui, and P. Vottero, "Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan," Polymer International, vol. 49, no. 4, pp. 337-344, 2000.
[12] S. G. Kou, L. M. Peters, and M. R. Mucalo, "Chitosan: A review of sources and preparation methods," International Journal of Biological Macromolecules, vol. 169, pp. 85-94, 2021.
[13] B. T. Iber, N. A. Kasan, D. Torsabo, and J. W. Omuwa, "A review of various sources of chitin and chitosan in nature," Journal of Renewable Materials, vol. 10, no. 4, p. 1097, 2022.
[14] T. Huq, A. Khan, D. Brown, N. Dhayagude, Z. He, and Y. Ni, "Sources, production and commercial applications of fungal chitosan: A review," Journal of Bioresources and Bioproducts, vol. 7, no. 2, pp. 85-98, 2022.
[15] Z. Liu, X. Ge, Y. Lu, S. Dong, Y. Zhao, and M. Zeng, "Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films," Food Hydrocolloids, vol. 26, no. 1, pp. 311-317, 2012.
[16] Q. Li, E. Dunn, E. Grandmaison, and M. F. Goosen, "Applications and properties of chitosan," in Applications of Chitan and Chitosan: CRC Press, 2020, pp. 3-29.
[17] I. Aranaz et al., "Chitosan: An overview of its properties and applications," Polymers, vol. 13, no. 19, p. 3256, 2021.
[18] S.-C. Hsu, S.-h. Hsu, and S.-W. Chang, "Effect of pH on Molecular Structures and Network of Glycol Chitosan," ACS Biomaterials Science & Engineering, vol. 6, no. 1, pp. 298-307, 2020/01/13 2020, doi: 10.1021/acsbiomaterials.9b01101.
[19] T.-Y. Gong, S.-h. Hsu, S.-W. Chang, and C.-C. Chou, "Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels," ACS Biomaterials Science & Engineering, vol. 9, no. 11, pp. 6146-6155, 2023/11/13 2023, doi: 10.1021/acsbiomaterials.3c00948.
[20] L.-T. Juan, S.-H. Lin, C.-W. Wong, U. S. Jeng, C.-F. Huang, and S.-h. Hsu, "Functionalized Cellulose Nanofibers as Crosslinkers to Produce Chitosan Self-Healing Hydrogel and Shape Memory Cryogel," ACS Applied Materials & Interfaces, vol. 14, no. 32, pp. 36353-36365, 2022/08/17 2022, doi: 10.1021/acsami.2c07170.
[21] L. Deng, B. Wang, W. Li, Z. Han, S. Chen, and H. Wang, "Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing," International Journal of Biological Macromolecules, vol. 217, pp. 77-87, 2022/09/30/ 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.07.017.
[22] W. Wang et al., "Chitosan derivatives and their application in biomedicine," International journal of molecular sciences, vol. 21, no. 2, p. 487, 2020.
[23] Q. Ding et al., "Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications," ACS Applied Materials & Interfaces, vol. 10, no. 33, pp. 27987-28002, 2018/08/22 2018, doi: 10.1021/acsami.8b09656.
[24] T.-H. Huang, S.-h. Hsu, and S.-W. Chang, "Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin," Computational and Structural Biotechnology Journal, vol. 20, pp. 700-709, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.csbj.2022.01.013.
[25] C. H. Borca and C. A. Arango, "Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan," The Journal of Physical Chemistry B, vol. 120, no. 15, pp. 3754-3764, 2016/04/21 2016, doi: 10.1021/acs.jpcb.5b11230.
[26] A. Gupta, A. Khodayari, A. C. T. van Duin, U. Hirn, A. W. Van Vuure, and D. Seveno, "Cellulose Nanocrystals: Tensile Strength and Failure Mechanisms Revealed Using Reactive Molecular Dynamics," Biomacromolecules, vol. 23, no. 6, pp. 2243-2254, 2022/06/13 2022, doi: 10.1021/acs.biomac.1c01110.
[27] X. Wu, R. J. Moon, and A. Martini, "Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation," Cellulose, vol. 21, no. 4, pp. 2233-2245, 2014/08/01 2014, doi: 10.1007/s10570-014-0325-0.
[28] S. Arola, Z. Kou, B. J. M. Rooijakkers, R. Velagapudi, M. Sammalkorpi, and M. B. Linder, "On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes," Cellulose, vol. 29, no. 11, pp. 6109-6121, 2022/07/01 2022, doi: 10.1007/s10570-022-04664-w.
[29] R. J. Spontak and V. Zucolotto, "Soft Nanoscience Letters," 2013.
[30] A. Koochaki, M. Shahgholi, S. M. Sajadi, E. Babadi, and M. Inc, "Investigation of the mechanical stability of polyethylene glycol hydrogel reinforced with cellulose nanofibrils for wound healing: Molecular dynamics simulation," Engineering Analysis with Boundary Elements, vol. 151, pp. 1-7, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.enganabound.2023.02.055.
[31] D. Lau, W. Jian, Z. Yu, and D. Hui, "Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges," Composites Part B: Engineering, vol. 143, pp. 282-291, 2018/06/15/ 2018, doi: https://doi.org/10.1016/j.compositesb.2018.01.014.
[32] A. Paajanen, Y. Sonavane, D. Ignasiak, J. A. Ketoja, T. Maloney, and S. Paavilainen, "Atomistic molecular dynamics simulations on the interaction of TEMPO-oxidized cellulose nanofibrils in water," Cellulose, vol. 23, no. 6, pp. 3449-3462, 2016/12/01 2016, doi: 10.1007/s10570-016-1076-x.
[33] R. M. Muthoka, H. C. Kim, J. W. Kim, L. Zhai, P. S. Panicker, and J. Kim, "Steered Pull Simulation to Determine Nanomechanical Properties of Cellulose Nanofiber," Materials, vol. 13, no. 3, doi: 10.3390/ma13030710.
[34] S. Kim, J. Lee, S. Jo, C. L. Brooks Iii, H. S. Lee, and W. Im, "CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules," Journal of Computational Chemistry, vol. 38, no. 21, pp. 1879-1886, 2017/06/05 2017, doi: https://doi.org/10.1002/jcc.24829.
[35] J. Huang et al., "CHARMM36m: an improved force field for folded and intrinsically disordered proteins," Nature Methods, vol. 14, no. 1, pp. 71-73, 2017/01/01 2017, doi: 10.1038/nmeth.4067.
[36] A. D. MacKerell, Jr. et al., "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," The Journal of Physical Chemistry B, vol. 102, no. 18, pp. 3586-3616, 1998/04/01 1998, doi: 10.1021/jp973084f.
[37] T. Darden, D. York, and L. Pedersen, "Particle mesh Ewald: An N log (N) method for Ewald sums in large systems," Journal of chemical physics, vol. 98, pp. 10089-10089, 1993.
[38] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, "A smooth particle mesh Ewald method," The Journal of chemical physics, vol. 103, no. 19, pp. 8577-8593, 1995.
[39] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, and K.-Y. Andrew Lin, "Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP," Polymer, vol. 72, pp. 395-405, 2015/08/18/ 2015, doi: https://doi.org/10.1016/j.polymer.2015.02.056.
[40] K. Mou, J. Li, Y. Wang, R. Cha, and X. Jiang, "2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection," Journal of Materials Chemistry B, vol. 5, no. 38, pp. 7876-7884, 2017.
[41] B. Sun, Q. Hou, Z. Liu, and Y. Ni, "Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive," Cellulose, vol. 22, no. 2, pp. 1135-1146, 2015/04/01 2015, doi: 10.1007/s10570-015-0575-5.
[42] Y. Nishiyama, P. Langan, and H. Chanzy, "Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction," Journal of the American Chemical Society, vol. 124, no. 31, pp. 9074-9082, 2002/08/01 2002, doi: 10.1021/ja0257319.
[43] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, no. 1, pp. 33-38, 1996/02/01/ 1996, doi: https://doi.org/10.1016/0263-7855(96)00018-5.
[44] J. C. Phillips et al., "Scalable molecular dynamics with NAMD," Journal of Computational Chemistry, vol. 26, no. 16, pp. 1781-1802, 2005/12/01 2005, doi: https://doi.org/10.1002/jcc.20289.
[45] S. Izrailev et al., "Steered Molecular Dynamics," in Computational Molecular Dynamics: Challenges, Methods, Ideas, Berlin, Heidelberg, P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel, Eds., 1999// 1999: Springer Berlin Heidelberg, pp. 39-65.
[46] A. P. Thompson et al., "LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales," Computer Physics Communications, vol. 271, p. 108171, 2022/02/01/ 2022, doi: https://doi.org/10.1016/j.cpc.2021.108171.
[47] D. Prada-Gracia, R. Shevchuk, and F. Rao, "The quest for self-consistency in hydrogen bond definitions," The Journal of Chemical Physics, vol. 139, no. 8, p. 084501, 2013, doi: 10.1063/1.4818885.
[48] L. Zhai, H. C. Kim, J. W. Kim, J. Kang, and J. Kim, "Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision," Cellulose, vol. 25, no. 7, pp. 4261-4268, 2018/07/01 2018, doi: 10.1007/s10570-018-1836-x.
[49] S. J. Eichhorn and G. R. Davies, "Modelling the crystalline deformation of native and regenerated cellulose," Cellulose, vol. 13, no. 3, pp. 291-307, 2006/06/01 2006, doi: 10.1007/s10570-006-9046-3.
[50] J. Ketoja, S. Paavilainen, J. L. McWhirter, T. Róg, J. Järvinen, and I. Vattulainen, "Mechanical properties of cellulose nanofibrils determined through atomistic molecular dynamics simulations," vol. 27, no. 2, pp. 282-286, 2012, doi: doi:10.3183/npprj-2012-27-02-p282-286.
[51] A. Khodayari, A. W. Van Vuure, U. Hirn, and D. Seveno, "Tensile behaviour of dislocated/crystalline cellulose fibrils at the nano scale," Carbohydrate Polymers, vol. 235, p. 115946, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.carbpol.2020.115946.
[52] F. L. Dri, L. G. Hector, R. J. Moon, and P. D. Zavattieri, "Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions," Cellulose, vol. 20, no. 6, pp. 2703-2718, 2013/12/01 2013, doi: 10.1007/s10570-013-0071-8.
[53] S. Iwamoto, A. Isogai, and T. Iwata, "Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers," Biomacromolecules, vol. 12, no. 3, pp. 831-836, 2011/03/14 2011, doi: 10.1021/bm101510r.
[54] H. C. Kim, D. Kim, J. Y. Lee, L. Zhai, and J. Kim, "Effect of Wet Spinning and Stretching to Enhance Mechanical Properties of Cellulose Nanofiber Filament," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 6, no. 3, pp. 567-575, 2019/07/01 2019, doi: 10.1007/s40684-019-00070-z.
[55] P. Elf, P. A. Larsson, A. Larsson, L. Wågberg, M. S. Hedenqvist, and F. Nilsson, "Effects of Ring Opening and Chemical Modification on the Properties of Dry and Moist Cellulose─Predictions with Molecular Dynamics Simulations," Biomacromolecules, vol. 25, no. 12, pp. 7581-7593, 2024/12/09 2024, doi: 10.1021/acs.biomac.4c00735.
[56] Z.-Y. Wang, S.-h. Hsu, S.-W. Chang, and C.-C. Chou, "Effects of Degrees of Aldehyde Modification on Molecular Structures and Properties of Cellulose Nanofiber Crosslinked Self-Healing Hydrogels," Manuscript submitted to ACS Omega, 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98816-
dc.description.abstract透過席夫鹼化學反應製備的乙二醇幾丁聚醣(Glycol chitosan, GC)與多功能纖維素奈米纖維(Multifunctional Cellulose Nanofiber, MCNF)複合水凝膠,展現了優異的自修復剪切稀化以及可注射特性,在多種應用方面具有良好的前景。MCNF是纖維素奈米纖維(CNF)的衍生物,透過依序進行2,2,6,6-四甲基哌啶-1-氧基(2,2,6,6-Tetramethylpiperidine-1-oxyl,TEMPO)氧化和高碘酸鹽氧化引入二醛基。這些醛基能夠與 GC 的胺基形成動態席夫鹼鍵。纖維素和殼聚醣都是生物相容性的天然聚合物,而MCNF的過度醛改質會破壞水凝膠網絡的均勻性。為了釐清MCNF醛改質影響水凝膠網絡分子結構的潛在分子機制,我們對單一MCNF和具有不同醛基取代度程度的GC/MCNF複合水凝膠進行了分子動力學模擬。對於單一MCNF,增加醛基取代度最初會導致分子構象更加伸展,但在更高醛基取代度(超過15%)下,分子鏈捲曲程度加劇。相應地,MCNF的楊氏模量也隨著醛基取代度的增加而略有下降,這與實驗結果的趨勢一致,表明由於分子內氫鍵的喪失和分子鏈柔韌性的增加,導致MCNF的機械剛度降低。在GC/MCNF水凝膠中,醛基含量顯著影響交互作用和網狀結構。在低於15%的醛基取代度下,GC和MCNF之間的氫鍵增強且分佈均勻,從而形成均質且機械強度較高的水凝膠。在更高的醛基取代度下,過度的GC-MCNF相互作用會導致局部聚集、互連性降低以及拉伸模量下降。本研究從分子層面分析了MCNF的醛基修飾如何影響MCNF的構象以及GC/MCNF水凝膠的整體完整性。這些發現為改善醛改質CNF自修復水凝膠在生物醫學和工程應用方面提供了重要的幫助。zh_TW
dc.description.abstractGlycol chitosan (GC) and multifunctional cellulose nanofiber (MCNF) composite hydrogel prepared via Schiff base chemistry has demonstrated excellent self-healing, shear-thinning, and injectable properties, holding promises for various applications. MCNF, a derivative of cellulose nanofibers (CNFs), is introduced with dialdehyde groups through sequential TEMPO-mediated oxidation and periodate oxidation. These aldehyde groups form dynamic Schiff base linkage with the amine groups of GC chains. While both cellulose and chitosan are biocompatible natural polymers, excessive aldehyde modification of MCNF can disrupt the uniformity of hydrogel network. To elucidate the underlying molecular mechanism of aldehyde modification of MCNF on affecting the molecular structure of the hydrogel network, here we performed molecular dynamics simulations on both single MCNF molecule and GC/MCNF composite hydrogel with varying degrees of aldehyde modification. For single MCNF, increased aldehyde modification initially resulted in a more extended molecular conformation, but at higher modification levels (above 15%), the chains became more curled. Correspondingly, the Young’s modulus of MCNF also decreased slightly with increased modification, consistent with the trends in experimental results suggesting reduced mechanical stiffness of the MCNF due to a loss in intramolecular hydrogen bonding and increased chain flexibility. Among GC/MCNF hydrogels, the aldehyde content significantly influenced the interaction and network structure. At modification levels below 15%, hydrogen bonding between GC and MCNF was enhanced and evenly distributed, supporting a homogeneous and mechanically robust hydrogel. At higher modification levels, excessive GC–MCNF interactions led to localized aggregation, reduced interconnectivity, and a decline in tensile modulus. This study provides molecular-level insights into how aldehyde modification of CNFs affects both the conformation of MCNF and the overall integrity of GC/MCNF hydrogels. These findings offer valuable guidance for optimizing aldehyde-modified CNF-based self-healing hydrogels for biomedical and engineering applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:18:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:18:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目次 v
圖次 vii
第一章 緒論 1
1.1 背景介紹 1
1.2 文獻回顧 1
1.2.1 奈米纖維素 1
1.2.2 幾丁聚醣 2
1.2.3 可注射的自修復水凝膠 5
1.2.4 分子動力學模擬 10
1.3 研究目的 10
1.4 論文方向 11
第二章 理論與方法 12
2.1 分子動力學模擬 12
2.1.1 條件設計 14
2.1.2 CHARMM力場 15
2.1.3 週期性邊界條件 16
2.2 模型設計 17
2.3 模擬流程 19
2.4 分析方法 21
2.4.1 迴轉半徑 21
2.4.2 頭尾端距離 21
2.4.3 氫鍵 22
2.4.4 拉伸分析 23
第三章 醛基取代度對MCNF性質的影響 25
3.1 醛基取代度對真空中MCNF性質的影響 25
3.1.1 MCNF在真空中的迴轉半徑和頭尾端距離變化 25
3.1.2 MCNF之間在真空中的氫鍵變化 27
3.1.3 MCNF在真空中的拉伸強度變化 31
3.2 醛基取代度對水中MCNF性質的影響 32
3.2.1 MCNF在水中的迴轉半徑和頭尾端距離變化 32
3.2.2 MCNF之間在水中的氫鍵變化 34
3.2.3 MCNF在水中的拉伸強度變化 37
第四章 醛基取代度對自修復水凝膠性質的影響 41
4.1 醛基取代度和結構對自修復水膠的影響 41
4.1.1 MCNF的迴轉半徑和頭尾端距離變化 41
4.1.2 乙二醇幾丁聚醣的迴轉半徑和頭尾端距離變化 43
4.2 醛基取代度對分子相互作用機制的影響 46
4.2.1 MCNF分子之間的氫鍵變化 46
4.2.2 MCNF與乙二醇幾丁聚醣間的氫鍵變化 48
4.2.3 乙二醇殼聚醣之間的分子作用機制 50
4.3 醛基取代度對水凝膠拉伸強度的影響 52
第五章 結論與未來展望 55
5.1 結論 55
5.2 未來展望 56
參考文獻 57
-
dc.language.isozh_TW-
dc.subject席夫鹼反應zh_TW
dc.subject二醛修飾zh_TW
dc.subject纖維素奈米纖維zh_TW
dc.subject分子動力學zh_TW
dc.subject乙二醇幾丁聚醣zh_TW
dc.subject自修復水凝膠zh_TW
dc.subjectSelf-Healing Hydrogelen
dc.subjectMolecular Dynamicsen
dc.subjectCellulose Nanofibersen
dc.subjectDialdehyde modificationen
dc.subjectSchiff Base Reactionen
dc.subjectGlycol Chitosanen
dc.title分子動力學模擬探討纖維素奈米纖維交聯劑之醛基取代度對其自修復水凝膠分子結構與性質的影響zh_TW
dc.titleEffect of aldehyde substitution degree on the structure and properties of cellulose nanofibers crosslinker self-healing hydrogels through molecular dynamics simulationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor張書瑋zh_TW
dc.contributor.coadvisorShu-Wei Changen
dc.contributor.oralexamcommittee周佳靚zh_TW
dc.contributor.oralexamcommitteeChia-Ching Chouen
dc.subject.keyword分子動力學,纖維素奈米纖維,二醛修飾,席夫鹼反應,自修復水凝膠,乙二醇幾丁聚醣,zh_TW
dc.subject.keywordMolecular Dynamics,Cellulose Nanofibers,Dialdehyde modification,Schiff Base Reaction,Self-Healing Hydrogel,Glycol Chitosan,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202503077-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2030-08-06-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved