請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98805完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 謝昀庭 | zh_TW |
| dc.contributor.author | YUN-TING HSIEH | en |
| dc.date.accessioned | 2025-08-19T16:16:23Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Fanella, D.A. and A.E. Naaman. Stress-Strain Properties of Fiber Reinforced Mortar in Compression. 1985.
2. Lin Showmay, H. and H. ChengTzu Thomas, Stress-Strain Behavior of Steel-fiber High-Strength Concrete Under Compression. ACI Structural Journal. 91(4). 3. Bencardino, F., et al., Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression. Journal of Materials in Civil Engineering, 2008. 20(3): p. 255-263. 4. Song, P.S. and S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 2004. 18: p. 669-673. 5. Naaman, A., HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES: CLASSIFICATION AND APPLICATIONS. 2007. 6. Fantilli, A.P., H. Mihashi, and P. Vallini, Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension. Cement and Concrete Research, 2009. 39(12): p. 1217-1229. 7. Naaman, A.E. and H. Najm, Bond-slip mechanisms of steel fibers in concrete. ACI Materials Journal, 1991. 88(2): p. 135-145. 8. 郭耀仁, 高強度鋼纖維混凝土的力學性質與圍束效應之研究, in 土木工程學研究所. 2012, 國立臺灣大學: 台北市. p. 116. 9. Kim, D.J., S. El-Tawil, and A. Naaman, Loading Rate Effect on Pullout Behavior of Deformed Steel Fibers. ACI Materials Journal, 2008. 105: p. 576-584. 10. 陳正誠, 韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計. 結構工程, 2000. 15卷(1=57期): p. 頁53-78. 11. Chou, C.-C. and S.-Y. Chen, Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Engineering Structures, 2010. 32(8): p. 2108-2121. 12. Tsai, K.-C., et al., Pseudo-dynamic tests of a full-scale CFT/BRB frame—Part I: Specimen design, experiment and analysis. Earthquake Engineering & Structural Dynamics, 2008. 37(7): p. 1081-1098. 13. Tsai, K.-C. and P.-C. Hsiao, Pseudo-dynamic test of a full-scale CFT/BRB frame—Part II: Seismic performance of buckling-restrained braces and connections. Earthquake Engineering & Structural Dynamics, 2008. 37(7): p. 1099-1115. 14. Tsai, K.-C., et al., Welded end-slot connection and debonding layers for buckling-restrained braces. Earthquake Engineering & Structural Dynamics, 2014. 43(12): p. 1785-1807. 15. 吳安傑, et al., 挫屈束制支撐構架設計概要與工程應用. 結構工程, 2015. 30(1): p. 11-33. 16. Watanabe, A., et al. Properties of brace encased in buckling-restraining concrete and steel tube. 17. Yu, Y.-J., et al., Earthquake response analyses of a full-scale five-story steel frame equipped with two types of dampers. Earthquake Engineering & Structural Dynamics, 2013. 42(9): p. 1301-1320. 18. 魏志毓 and 蔡克銓, 挫屈束制支撐構架之設計. 結構工程, 2008. 23(4): p. 85-100. 19. 楊巽閎, 新建含挫屈束制支撐之實尺寸兩層樓鋼筋混凝土構架耐震設計與實驗研究, in 土木工程學研究所. 2015, 國立臺灣大學. p. 1-202. 20. 黃潔倫, 含挫屈束制支撐之新建鋼筋混凝土構架耐震設計與反應分析研究, in 土木工程學研究所. 2015, 國立臺灣大學. p. 1-259. 21. Lin, P.-C., et al., Seismic design and experiment of single and coupled corner gusset connections in a full-scale two-story buckling-restrained braced frame. Earthquake Engineering & Structural Dynamics, 2015. 44(13): p. 2177-2198. 22. Tan, Q., et al., Experimental Performance of a Full-Scale Spatial RC Frame with Buckling-Restrained Braces Subjected to Bidirectional Loading. Journal of Structural Engineering, 2021. 147(3): p. 04020352. 23. Berman Jeffrey, W. and M. Bruneau, Cyclic Testing of a Buckling Restrained Braced Frame with Unconstrained Gusset Connections. Journal of Structural Engineering, 2009. 135(12): p. 1499-1510. 24. Qu, Z., et al., Subassemblage Cyclic Loading Tests of Buckling-Restrained Braced RC Frames with Unconstrained Gusset Connections. Journal of Structural Engineering, 2016. 142(2): p. 04015128. 25. Hwang, S.-J. and H.-J. Lee, Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model. Journal of Structural Engineering, 2002. 128(12): p. 1519-1526. 26. 李宏仁, 鋼筋混凝土耐震梁柱接頭剪力強度之研究, in 營建工程系. 2000, 國立臺灣科技大學: 台北市. p. 295. 27. Vecchio, F.J. and M.P. Collins, Compression Response of Cracked Reinforced Concrete. Journal of Structural Engineering, 1993. 119(12): p. 3590-3610. 28. Abdeldjelil, B. and T.C.H. Thomas, Constitutive Laws of Softened Concrete in Biaxial Tension Compression. ACI Structural Journal. 92(5). 29. Zhang Li-Xin, B. and T.C. Hsu Thomas, Behavior and Analysis of 100 MPa Concrete Membrane Elements. Journal of Structural Engineering, 1998. 124(1): p. 24-34. 30. 陳韋丞, 高強度鋼纖維混凝土深梁剪力行為研究, in 土木工程學研究所. 2018, 國立臺灣大學: 台北市. p. 144. 31. Mansour, M.Y., T.T.C. Hsu, and Y.L. Mo, Constitutive relations of cracked reinforced concrete with steel fibers. American Concrete Institute, ACI Special Publication, 2009: p. 101-121. 32. 洪崇文, 添加鋼纖維對於高強度混凝土瓶狀壓拉桿行為之影響, in 土木工程學研究所. 2020, 國立臺灣大學: 台北市. p. 341. 33. Wagh, S.K., et al., Effect of steel fibers on the compression behavior of isolated reinforced concrete panel: An experimental investigation and analytical model. Structures, 2024. 70: p. 107661. 34. Bai, J., et al., Seismic performance analysis of PBL gusset connections in buckling-restrained braced RC frames. Journal of Building Engineering, 2021. 42: p. 102458. 35. Bai, J., et al., Seismic design and subassemblage tests of buckling-restrained braced RC frames with shear connector gusset connections. Engineering Structures, 2021. 234: p. 112018. 36. 簡濂淞, 高強度鋼纖維混凝土之直線及擴頭鋼筋握裹行為與伸展長度研究, in 土木工程學系. 2024, 國立臺灣大學: 台北市. p. 140. 37. Hopkins, D., Seismic design of reinforced concrete and masonry buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 1992. 25: p. 362. 38. 林保均;蔡克銓;吳安傑;莊明介, 挫屈束制支撐與接合隅板設計雲端運算流程解說. 2020, 國家地震工程研究中心、國立臺灣大學土木工程學系. 39. Tsai, C.-Y., et al., Seismic performance analysis of BRBs and gussets in a full-scale 2-story BRB-RCF specimen. Earthquake Engineering & Structural Dynamics, 2018. 47(12): p. 2366-2389. 40. 洪甫安, 以鋼纖維混凝土簡化BRB與RC構架接合之模擬與分析, in 土木工程學系. 2025, 國立臺灣大學: 台北市. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98805 | - |
| dc.description.abstract | 挫屈束制支撐(Buckling Restrained Brace, BRB)具備優異的勁度與消能能力, 能在拉壓雙向均發展至降伏而不產生挫屈,並透過穩定的塑性變形有效消散能量。 目前 BRB 應用於鋼構系統已相當普遍,然其與鋼筋混凝土(RC)構架接合之應 用則較不常見,主因為鋼構與 RC 間之接合施工介面較為複雜。過往將 BRB 直 接接合於梁柱構件時,可能導致以下缺點:梁柱開合效應造成接合板挫屈與焊道破 壞、接合區剛性增加導致結構振動週期下降進而提高地震力需求、剛性接合板傳遞 彎矩至 BRB 使其易產生降伏破壞,以及接合區對柱造成損傷進而影響 BRB 消 能行為等問題。
鋼纖維摻入混凝土後,除可提升混凝土之韌性、圍束能力與剪力強度,亦能透 過多重裂縫效應減少破壞過程中的瞬間剝落,維持構件整體性。有鑑於此,本研究 嘗試將 BRB 僅接合於 RC 梁構件,搭配預埋鐵件與鋼纖維混凝土使用,以強化 接合區剪力強度,進而改善因 BRB 集中載重所造成的彎矩與剪力需求提升問題。 本研究設計一座含 BRB 之 RC 子構架,於接合區域使用鋼纖維混凝土進行 簡化設計,使用體積取代率 Vf 為 1.5%之鋼纖維混凝土,並透過反覆載重試驗探討 其可行性。最終將提出一套適用於此類構架接合之簡化設計流程。 實驗結果顯示,本研究之破壞模式為 BRB 破壞主控,符合本研究之設計;由 於實驗系統制動器出力問題,導致柱之塑鉸較梁先早發生。於加載層間變位 3%以 前,梁非接合區域發展較接合區域較多之撓曲裂縫,於 0.5%層間變位時 BRB 降伏 並開始消能。於層間變位 5%時 BRB 發生破壞,實驗終止。試驗結果顯示預埋鐵 件和接合板能在 BRB 破壞時仍保持完整不破壞,符合實驗之設計邏輯,惟 RC 接 頭區域產生剪力破壞,因此建議在接頭部分多配置剪力鋼筋以提升剪力強度。 | zh_TW |
| dc.description.abstract | Buckling Restrained Braces (BRBs) exhibit excellent stiffness and energy dissipation capacity, capable of yielding in both tension and compression without buckling, thereby dissipating seismic energy through stable plastic deformation. While BRBs have been widely adopted in steel structures, their application in reinforced concrete (RC) frames remains limited, primarily due to the complexities associated with the steel–RC connection interface. Previous studies have shown that directly connecting BRBs to RC beam–column joints may induce several issues, including gusset plate buckling and weld failure due to frame action, increased joint stiffness that shortens structural period and raises seismic demand, unintended moment transfer to BRBs, and damage to RC columns that compromises the BRB’s energy dissipation performance.
Incorporating steel fibers into concrete enhances its toughness, confinement, and shear strength, while also reducing spalling through multiple fine cracks, thereby preserving member integrity. Based on this, the present study investigates a connection strategy where BRBs are anchored solely to RC beams using embedded steel plates and steel fiber reinforced concrete (SFRC) to strengthen the shear capacity of the joint and alleviate the increased moment and shear demand caused by concentrated BRB forces. A simplified RC subassembly specimen with BRB connections was designed, in which the connection region employed SFRC with a fiber volume fraction (Vf) of 1.5%. A cyclic loading test was conducted to evaluate the feasibility of the proposed design. The study ultimately proposes a simplified design approach for such BRB-to-RC beam connections. Experimental results indicate that the failure mode was governed by BRB fracture, consistent with the design intent. Due to actuator force imbalance in the test setup, plastic hinging occurred in the RC column prior to the beam. Before reaching a 3% interstory drift, more flexural cracks developed outside the connection region than within, demonstrating the effectiveness of the plastic hinge control design. The BRB yielded at 0.5% drift and fractured at 5% drift, leading to test termination. The embedded steel plates and gusset connections remained intact throughout, validating the proposed connection approach. However, shear failure occurred in the RC joint region, suggesting that additional transverse reinforcement should be provided to enhance shear strength in future designs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:16:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:16:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目次 IV 圖次 VII 表次 XI 第一章、 緒論 1 1.1 研究動機 1 1.2 研究目的與方法 2 1.3 論文架構 3 第二章、 文獻回顧 4 2.1 鋼纖維混凝土 4 2.1.1 添加鋼纖維於混凝土之力學影響 4 2.1.2 鋼纖維混凝土抗拉試驗之力學行為 10 2.1.3 端鉤型鋼纖維之拉拔行為 13 2.2 挫屈束制支撐(BRB) 16 2.2.1 挫屈束制支撐概述 16 2.2.2 挫屈束制支撐之組成與功能 17 2.2.3 挫屈束制支撐力學行為 19 2.3 BRB與RC接合 22 2.3.1 BRB與RC梁柱之接合方式 22 2.3.2 無束制支撐接合板接合方式 32 2.4 RC構件塑鉸控制方法 39 2.5 軟化拉壓桿模型(Soften Strut-and-Tie Model,SST) 42 2.5.1 強度計算公式 43 2.5.2 拉壓桿指標K 45 2.5.3 軟化係數ξ 49 2.6 鋼纖維混凝土軟化壓拉桿模型 50 2.6.1 鋼纖維混凝土拉壓桿指標K 51 2.6.2 鋼纖維混凝土軟化係數ζf 52 2.6.3 鋼纖維混凝土軟化係數ζf修正 53 2.6.4 水平及垂直拉桿強度Fyh'與Fyv'修正 54 2.7 簡化構架接合實驗 57 第三章、 試體設計 63 3.1 試體設計原則 63 3.2 RC構件設計 65 3.2.1 梁柱構件設計 66 3.2.2 梁構件塑鉸控制設計 69 3.2.3 鋼纖維混凝土及鋼筋伸展長度設計 70 3.3 RC構件不連續區之設計 72 3.3.1 鋼纖維混凝土軟化拉壓桿剪力強度 72 3.4 BRB設計 80 3.4.1 BRB 80 3.4.2 BRB接合板 86 3.5 BRB與RC接合設計 93 3.5.1 拉力強度檢核 94 3.5.2 系統剪力強度檢核 94 3.5.3 單根螺桿剪力強度檢核 95 第四章、 實驗計畫 98 4.1 試體製作 98 4.1.1 試驗材料 98 4.1.2 試體施作流程 98 4.2 實驗佈置 102 4.2.1 測試系統 102 4.2.2 實驗配置 102 4.2.3 內部量測系統 104 4.2.4 外部量測系統 107 4.2.5 實驗安裝步驟 108 第五章、 實驗結果與討論 111 5.1 材料試驗 111 5.1.1 鋼筋拉伸試驗 111 5.1.2 混凝土抗壓試驗 111 5.2 實驗過程 112 5.2.1 實驗裂縫發展 113 5.2.2 破壞模式 115 第六章、 結論與建議 117 6.1 研究結論 117 6.2 建議 117 參考文獻 118 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋼纖維混凝土 | zh_TW |
| dc.subject | BRB | zh_TW |
| dc.subject | 預埋鐵件 | zh_TW |
| dc.subject | 子構架實驗 | zh_TW |
| dc.subject | 塑鉸控制 | zh_TW |
| dc.subject | steel fiber reinforced concrete | en |
| dc.subject | unconstrained gusset plate | en |
| dc.subject | sub-assemblage test | en |
| dc.subject | damage control | en |
| dc.subject | BRB | en |
| dc.title | 以鋼纖維混凝土簡化BRB與RC構架接合之實驗設計與研究 | zh_TW |
| dc.title | Experimental Design of a Simplified Connection Between BRB and RC Frames Using Steel Fiber Reinforced Concrete | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹穎雯;胡瑋秀;林克強 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Chan;Wei-Hsiu Hu;Ker-Chun Lin | en |
| dc.subject.keyword | 鋼纖維混凝土,BRB,預埋鐵件,子構架實驗,塑鉸控制, | zh_TW |
| dc.subject.keyword | steel fiber reinforced concrete,BRB,unconstrained gusset plate,sub-assemblage test,damage control, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202504129 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
