Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98801
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍zh_TW
dc.contributor.advisorTang-Long Shenen
dc.contributor.author黃品皓zh_TW
dc.contributor.authorPin-Hao Huangen
dc.date.accessioned2025-08-19T16:15:26Z-
dc.date.available2025-09-17-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationBecker, W. R., Nevins, S. A., Chen, D. C., Chiu, R., Horning, A. M., Guha, T. K., Laquindanum, R., Mills, M., Chaib, H., & Ladabaum, U. (2022). Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nature genetics, 54(7), 985–995.
Berg, K. C., Eide, P. W., Eilertsen, I. A., Johannessen, B., Bruun, J., Danielsen, S. A., Bjørnslett, M., Meza-Zepeda, L. A., Eknæs, M., & Lind, G. E. (2017). Multi-omics of 34 colorectal cancer cell lines-a resource for biomedical studies. Molecular cancer, 16, 1–16.
Berg, K. C., Sveen, A., Høland, M., Alagaratnam, S., Berg, M., Danielsen, S. A., Nesbakken, A., Søreide, K., & Lothe, R. A. (2019). Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains. Oncogene, 38(33), 6109–6122.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091–1093.
Bogie, R. M., Veldman, M. H., Snijders, L. A., Winkens, B., Kaltenbach, T., Masclee, A. A., Matsuda, T., Rondagh, E. J., Soetikno, R., & Tanaka, S. (2018). Endoscopic subtypes of colorectal laterally spreading tumors (LSTs) and the risk of submucosal invasion: a meta-analysis. Endoscopy, 50(03), 263–282.
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, n/a(n/a). https://doi.org/https://doi.org/10.3322/caac.21834
Byrling, J., Hilmersson, K., Ansari, D., Andersson, R., & Andersson, B. (2022). Thrombospondin-2 as a diagnostic biomarker for distal cholangiocarcinoma and pancreatic ductal adenocarcinoma. Clinical and Translational Oncology, 24(2), 297–304.
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., Zhang, F., Mundlos, S., Christiansen, L., & Steemers, F. J. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature, 566(7745), 496–502.
Carlson, C., Lawler, J., & Mosher, D. (2008). Thrombospondins: from structure to therapeutics: structures of thrombospondins. Cellular and Molecular Life Sciences, 65, 672–686.
Carlson, C. B., Bernstein, D. A., Annis, D. S., Misenheimer, T. M., Hannah, B.-l. A., Mosher, D. F., & Keck, J. L. (2005). Structure of the calcium-rich signature domain of human thrombospondin-2. Nature structural & molecular biology, 12(10), 910–914.
Chang, Z., Gao, Y., Chen, P., Gao, W., Zhao, W., Wu, D., Liang, W., Chen, Z., Chen, L., & Xi, H. (2024). THBS2 promotes gastric cancer progression and stemness via the Notch signaling pathway. American Journal of Cancer Research, 14(7), 3433.
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890.
Chhabra, Y., & Weeraratna, A. T. (2023). Fibroblasts in cancer: Unity in heterogeneity. cell, 186(8), 1580–1609.
Chuang, T.-J., Wu, C.-S., Chen, C.-Y., Hung, L.-Y., Chiang, T.-W., & Yang, M.-Y. (2016). NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic acids research, 44(3), e29–e29.
Cords, L., Tietscher, S., Anzeneder, T., Langwieder, C., Rees, M., de Souza, N., & Bodenmiller, B. (2023). Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nature communications, 14(1), 4294.
Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., Johnston, S. E., Vrcic, A., Wong, B., & Khan, M. (2017). The Drug Repurposing Hub: a next-generation drug library and information resource. Nature medicine, 23(4), 405–408.
Corso, G., Stärk, H., Jing, B., Barzilay, R., & Jaakkola, T. (2022). Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776.
Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S., & Tabernero, J. (2017). Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature reviews cancer, 17(2), 79–92.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21.
Eide, P. W., Bruun, J., Lothe, R. A., & Sveen, A. (2017). CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Scientific reports, 7(1), 16618.
Endoscopic-Classification-Review-Group. (2005). Update on the Paris classification of superficial neoplastic lesions in the digestive tract. Endoscopy, 37(06), 570–578.
Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. cell, 61(5), 759–767.
Fessler, E., & Medema, J. P. (2016). Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Trends in cancer, 2(9), 505–518.
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., & Larsson, E. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling, 6(269), pl1–pl1.
Gimotty, P. A., Till, J. E., Udgata, S., Takenaka, N., Yee, S. S., LaRiviere, M. J., O’Hara, M. H., Reiss, K. A., O'Dwyer, P., & Katona, B. W. (2021). THBS2 as a prognostic biomarker for patients diagnosed with metastatic pancreatic ductal adenocarcinoma. Oncotarget, 12(22), 2266.
Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., & Angelino, P. (2015). The consensus molecular subtypes of colorectal cancer. Nature medicine, 21(11), 1350–1356.
Gulati, G. S., Sikandar, S. S., Wesche, D. J., Manjunath, A., Bharadwaj, A., Berger, M. J., Ilagan, F., Kuo, A. H., Hsieh, R. W., & Cai, S. (2020). Single-cell transcriptional diversity is a hallmark of developmental potential. Science, 367(6476), 405–411.
Győrffy, B. (2024). Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. The Innovation, 5(3).
Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: gene set variation analysis for microarray and RNA-seq data. BMC bioinformatics, 14, 1–15.
Hao, Y., Stuart, T., Kowalski, M. H., Choudhary, S., Hoffman, P., Hartman, A., Srivastava, A., Molla, G., Madad, S., & Fernandez-Granda, C. (2024). Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature biotechnology, 42(2), 293–304.
He, Z., Lin, J., Chen, C., Chen, Y., Yang, S., Cai, X., He, Y., & Liu, S. (2022). Identification of BGN and THBS2 as metastasis‐specific biomarkers and poor survival key regulators in human colon cancer by integrated analysis. Clinical and translational medicine, 12(11), e973.
Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2020). DeepPurpose: a deep learning library for drug–target interaction prediction. Bioinformatics, 36(22-23), 5545–5547.
Joanito, I., Wirapati, P., Zhao, N., Nawaz, Z., Yeo, G., Lee, F., Eng, C. L., Macalinao, D. C., Kahraman, M., & Srinivasan, H. (2022). Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nature genetics, 54(7), 963–975.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., & Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.
Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic acids research, 47(D1), D155–D162.
Kudo, S.-e., Kouyama, Y., Ogawa, Y., Ichimasa, K., Hamada, T., Kato, K., Kudo, K., Masuda, T., Otsu, H., & Misawa, M. (2020). Depressed colorectal cancer: a new paradigm in early colorectal cancer. Clinical and translational gastroenterology, 11(12), e00269.
Kudo, S. e., Lambert, R., Allen, J. I., Fujii, H., Fujii, T., Kashida, H., Matsuda, T., Mori, M., Saito, H., & Shimoda, T. (2008). Nonpolypoid neoplastic lesions of the colorectal mucosa. Gastrointestinal endoscopy, 68(4), S3–S47.
Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics, 9(1), 559.
Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987–2993.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & Subgroup, G. P. D. P. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.
Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer research, 77(21), e108–e110.
Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic acids research, 48(W1), W509–W514.
Liao, X., Wang, W., Yu, B., & Tan, S. (2022). Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: An integrative pan-cancer analysis. Cancer cell international, 22(1), 213.
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.
Lin, Y., Lin, E., Li, Y., Chen, X., Chen, M., Huang, J., Guo, W., Chen, L., Wu, L., & Zhang, X. (2022). Thrombospondin 2 is a functional predictive and prognostic biomarker for triple-negative breast cancer patients with neoadjuvant chemotherapy. Pathology and Oncology Research, 28, 1610559.
Liu, Y., Lv, H., Liu, X., Xu, L., Li, T., Zhou, H., Zhu, H., Hao, C., Lin, C., & Zhang, Y. (2024). THBS2 signaling pathway promotes colorectal cancer metastasis by activating the Wnt/β-catenin pathway and facilitating exosome-mediated M2 macrophage polarization. Journal of Experimental & Clinical Cancer Research, 43(1), 195.
Liu, Z., Ba, Y., Shan, D., Zhou, X., Zuo, A., Zhang, Y., Xu, H., Liu, S., Liu, B., & Zhao, Y. (2025). THBS2-producing matrix CAFs promote colorectal cancer progression and link to poor prognosis via the CD47-MAPK axis. Cell reports, 44(4).
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15, 1–21.
Marin, H. E., Peraza, M. A., Billin, A. N., Willson, T. M., Ward, J. M., Kennett, M. J., Gonzalez, F. J., & Peters, J. M. (2006). Ligand activation of peroxisome proliferator–activated receptor β inhibits colon carcinogenesis. Cancer research, 66(8), 4394–4401.
Matsuda, T., Saito, Y., Hotta, K., Sano, Y., & Fujii, T. (2010). Prevalence and clinicopathological features of nonpolypoid colorectal neoplasms: should we pay more attention to identifying flat and depressed lesions? Digestive Endoscopy, 22, S57–S62.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., & Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 20(9), 1297–1303.
Menter, D. G., Davis, J. S., Broom, B. M., Overman, M. J., Morris, J., & Kopetz, S. (2019). Back to the colorectal cancer consensus molecular subtype future. Current gastroenterology reports, 21, 1–12.
Mudge, J. M., Carbonell-Sala, S., Diekhans, M., Martinez, J. G., Hunt, T., Jungreis, I., Loveland, J. E., Arnan, C., Barnes, I., & Bennett, R. (2025). GENCODE 2025: reference gene annotation for human and mouse. Nucleic acids research, 53(D1), D966–D975.
Nan, P., Dong, X., Bai, X., Lu, H., Liu, F., Sun, Y., & Zhao, X. (2022). Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Letters, 528, 59–75.
Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera, G. A., Kling, D. E., Gauthier, L. D., Levy-Moonshine, A., & Roazen, D. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. biorxiv, 201178.
Qin, X., Rodriguez, F. C., Sufi, J., Vlckova, P., Claus, J., & Tape, C. J. (2023). An oncogenic phenoscape of colonic stem cell polarization. cell, 186(25), 5554–5568. e5518.
Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., & Trapnell, C. (2017). Reversed graph embedding resolves complex single-cell trajectories. Nature methods, 14(10), 979–982.
Qu, H. L., Hasen, G. W., Hou, Y. Y., & Zhang, C. X. (2022). THBS2 promotes cell migration and invasion in colorectal cancer via modulating Wnt/β‐catenin signaling pathway. The Kaohsiung Journal of Medical Sciences, 38(5), 469–478.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842.
Rego, N., & Koes, D. (2015). 3Dmol. js: molecular visualization with WebGL. Bioinformatics, 31(8), 1322–1324.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43(7), e47–e47.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11), 2498–2504.
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA Cancer J Clin, 74(1), 12–49.
Snel, B., Lehmann, G., Bork, P., & Huynen, M. A. (2000). STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic acids research, 28(18), 3442–3444.
Szklarczyk, D., Santos, A., Von Mering, C., Jensen, L. J., Bork, P., & Kuhn, M. (2016). STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic acids research, 44(D1), D380–D384.
Thanki, K., Nicholls, M. E., Gajjar, A., Senagore, A. J., Qiu, S., Szabo, C., Hellmich, M. R., & Chao, C. (2017). Consensus molecular subtypes of colorectal cancer and their clinical implications. International biological and biomedical journal, 3(3), 105.
Uraoka, T., Saito, Y., Matsuda, T., Ikehara, H., Gotoda, T., Saito, D., & Fujii, T. (2006). Endoscopic indications for endoscopic mucosal resection of laterally spreading tumours in the colorectum. Gut, 55(11), 1592–1597.
Wagner, K.-D., Du, S., Martin, L., Leccia, N., Michiels, J.-F., & Wagner, N. (2019). Vascular PPARβ/δ promotes tumor angiogenesis and progression. Cells, 8(12), 1623.
Wang, X., Wang, G., Shi, Y., Sun, L., Gorczynski, R., Li, Y., Xu, Z., & Spaner, D. (2016). PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis, 5(6), e232–e232.
Wang, X., Zhang, L., Li, H., Sun, W., Zhang, H., & Lai, M. (2016). THBS2 is a potential prognostic biomarker in colorectal cancer. Scientific reports, 6(1), 33366.
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., & Zhan, L. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2(3).
Xiong, L., Zhu, C., Lu, Y., Chen, M., & Li, M. (2023). Serum THBS2 is a potential biomarker for the diagnosis of non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 149(17), 15671–15677.
Xu, C., Gu, L., Kuerbanjiang, M., Wen, S., Xu, Q., & Xue, H. (2020). Thrombospondin 2/toll-like receptor 4 axis contributes to HIF-1α-derived glycolysis in colorectal cancer. Frontiers in Oncology, 10, 557730.
Yang, H., Sun, B., Fan, L., Ma, W., Xu, K., Hall, S. R., Wang, Z., Schmid, R. A., Peng, R.-W., & Marti, T. M. (2022). Multi-scale integrative analyses identify THBS2+ cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics, 12(7), 3104.
Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., Treviño, V., Shen, H., Laird, P. W., & Levine, D. A. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature communications, 4(1), 2612.
Zhu, B., Bai, R., Kennett, M. J., Kang, B.-H., Gonzalez, F. J., & Peters, J. M. (2010). Chemoprevention of Chemically Induced Skin Tumorigenesis by Ligand Activation of Peroxisome Proliferator–Activated Receptor-β/δ and Inhibition of Cyclooxygenase 2. Molecular cancer therapeutics, 9(12), 3267–3277.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98801-
dc.description.abstract結直腸息肉是結直腸癌(CRC)的前驅病變,了解其分子異質性有助於揭示結直腸癌早期惡性轉化的機制。本研究收集18例結直腸息肉及5例正常黏膜樣本,進行轉錄體分析。結果顯示,息肉在基因表現、路徑活化與腫瘤微環境(TME)組成上呈現出與CMS2型與CMS4型結直腸癌相似的二元分化特徵。其中,我們發現THBS2為驅動上皮–間質轉化(EMT)的關鍵因子,其透過 integrin αVβ3–FAK訊號通路發揮作用,且其表現量與息肉癌症率呈正相關 (R2 = 0.84,P = 0.03)。泛癌分析支持 THBS2 為結直腸息肉與癌症的預後標誌。單細胞轉錄體分析進一步揭示出一群具特徵性的 THBS2⁺ 癌相關纖維母細胞(CAF),參與腫瘤微環境中早期的細胞外基質(ECM)重塑。體外實驗證實,rhTHBS2及Thbs2過表達之條件培養基(CM)促進CMS4大腸癌細胞Caco-2及HCT116的腫瘤形成、跨膜遷移及侵襲能力。值得注意的是,藉由藥物重定位所辨識出的 GW0742 能抑制rhTHBS2造成的細胞遷移。整合mRNA、lncRNA、miRNA、circRNA的WGCNA分析指出,ncRNA參與THBS2調控的惡性轉型。綜上所述,CRC 的預後可能在癌症發生前即已被THBS2⁺ CAF 所主導的腫瘤微環境塑形,並指出THBS2及其調控網路為早期干預與預後評估的潛在標誌物。zh_TW
dc.description.abstractColorectal polyps are precancerous lesions of CRC, yet their molecular heterogeneity and links to CRC subtypes remain unclear. We analyzed bulk transcriptomes of 18 colorectal polyps and 5 normal controls, revealing a dichotomous pattern in gene expression, pathway activation, and TME composition resembling CMS2 and CMS4 CRC. THBS2 drives EMT via integrin αVβ3–FAK and correlates with polyp cancer rates (R² = 0.84, P = 0.03). Pan-cancer analyses supported THBS2 as a prognostic marker for both polyps and CRC. Single-cell transcriptomics further revealed a distinct THBS2⁺ cancer-associated fibroblast (CAF) population implicated in early extracellular matrix (ECM) remodeling within the TME. In vitro, rhTHBS2/Thbs2 OE fibroblast CM promotes tumorigenesis, migration and invasion in CMS4 CRC cells; while GW0742, a drug identified through repurposing, reverses these effects. Integrative WGCNA of multi-RNA reveals ncRNA networks underpinning THBS2-driven transformation. These findings suggest that CRC prognostic fate may be preconfigured by THBS2⁺ CAFs before cancer onset and nominate THBS2 and its regulatory circuit as early biomarkers and therapeutic targets.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:15:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:15:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 II
致謝 III
摘要 IV
Abstract V
Contents VI
The list of figures IX
The list of tables XI
Introduction 1
1.1 Colorectal cancer and concensus molecular subtypes 1
1.2 Classification, prognosis and molecular features of colorectal polyps 2
1.3 Malignant transformation mechanisms 3
1.4 Research aims 4
Materials and methods 6
2.1 Clinical samples 6
2.2 Library preparation and next generation sequencing 7
2.2.1 Messenger RNA (mRNA) and long non-coding RNA (lncRNA) 7
2.2.3 MicroRNA (miRNA) 8
2.2.3 Circular RNA (circRNA) 8
2.3 RNA-seq variant calling 9
2.4 Transcriptomic analysis 10
2.5 Pan-cancer analysis 11
2.6 Single cell transcriptomic analysis 11
2.7 Immunohistochemistry (IHC) staining 12
2.8 Cell culture 13
2.9 Conditioned Medium Collection and Protein Fractionation 13
2.10 Plasmids and transfection 14
2.11 RNA extraction and quantitative real-time polymerase chain reaction (qPCR) 15
2.12 Western blot 15
2.13 Functional assays 16
2.14 Drug repurposing 17
2.15 Molecular docking 17
2.16 Weighted gene co-expression network analysis (WGCNA) 18
Results 20
3.1 Clinicopathological characteristics of colorectal polyp subtypes 20
3.2 A dichotomous transcriptomic programs in colorectal polyp subtypes 21
3.3 Shared and distinct pathway activation patterns link polyp subtypes to consensus molecular subtypes (CMS) of CRC 22
3.4 Tumor-microenvironment analysis corroborates CMS4-like stromal activation in LST-NG and DN polyps 23
3.5 THBS2 emerged as a potential driver of EMT and is positively correlated with colorectal polyp cancer rates 24
3.6 Pan-cancer analysis reveals prognostic value of THBS2 in colorectal polyps and CRC 26
3.7 Single-cell transcriptomic analysis identifies THBS2⁺ matrix CAFs as the primary source of THBS2 in colorectal cancer 27
3.8 THBS2 promotes colonogenesis and migration of CMS4 CRC in vitro 29
3.9 Structure-guided repurposing identified the PPAR-δ agonist GW0742 as a nanomolar THBS2 binder and concentration-dependent modulator of THBS2-driven motility 30
3.10 WGCNA reveals a key ncRNA co-expression module associated with polyp malignancy and THBS2 32
Discussion 33
4.1 Implications of the dichotomous molecular and stromal patterns in colorectal polyps 33
4.2 Role of THBS2 in malignant transformation of colorectal polyps 34
4.3 Mechanistic complexity of THBS2-mediated pro-tumor signaling 36
4.4 Translational potential of THBS2 as a biomarker and therapeutic target 37
4.5 Clinical relevance of THBS2⁺ mCAFs in residual disease and PCCRC 38
4.6 Repurposing GW0742 as a THBS2 antagonist in CMS4 CRC 38
Conclusion 40
References 41
Tables 48
Figures 49
Appendix 66
-
dc.language.isoen-
dc.subject結直腸癌zh_TW
dc.subject結直腸息肉zh_TW
dc.subjectTHBS2zh_TW
dc.subjectintegrin αVβ3zh_TW
dc.subjectcancer associated fibroblastzh_TW
dc.subjectGW0742zh_TW
dc.subjectTHBS2en
dc.subjectcolorectal canceren
dc.subjectGW0742en
dc.subjectcancer associated fibroblasten
dc.subjectintegrin αVβ3en
dc.subjectcolorectal polypsen
dc.titleThrombospondin 2(THBS2)表現之癌症相關成纖維細胞驅動結直腸息肉的惡性轉化zh_TW
dc.titleThrombospondin 2 (THBS2)–positive cancer-associated fibroblasts drive the malignant transformation of colorectal polypsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳倩瑜;邱瀚模zh_TW
dc.contributor.oralexamcommitteeChien-Yu Chen;Han-Mo Chiuen
dc.subject.keyword結直腸癌,結直腸息肉,THBS2,integrin αVβ3,cancer associated fibroblast,GW0742,zh_TW
dc.subject.keywordcolorectal cancer,colorectal polyps,THBS2,integrin αVβ3,cancer associated fibroblast,GW0742,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202503687-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-liftN/A-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
40.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved