請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98798完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國偉 | zh_TW |
| dc.contributor.advisor | Kuo-Wei Liao | en |
| dc.contributor.author | 劉尚融 | zh_TW |
| dc.contributor.author | Shang-Jung Liu | en |
| dc.date.accessioned | 2025-08-19T16:14:47Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Bridges, E. M., & Oldeman, L. R. (1999). Global Assessment of Human-Induced Soil Degradation. Arid Soil Research and Rehabilitation, 13(4), 319–325.
Bagnold Ralph Alger (1973) The nature of saltation and of ‘bed-load’ transport in waterProc. R. Soc. Lond. A332473–504. Benkaci, S., & Remini, B. (2023). Sediment Transport Modeling at the Oued Fodda Watershed Level Using HEC-RAS 1D Software. GeoScience Engineering, 69(2). Csáfordi, P., Pődör, A., Bug, J., & Gribovsyki, Z. (2012). Soil erosion analysis in a small forested catchment supported by ArcGIS Model Builder. Acta Silvatica et Lignaria Hungarica 8 (2012), Nr. 1, 8(1), 39-56. Ellison, W.D. (1948), Soil Erosion†. Soil Science Society of America Journal, 12: 479-484. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3-4), 222-229. Kamandbedast, A. A., Nasrollahpour, R., & Mashal, M. (2013). Estimation of sediment transport in rivers using CCHE2D model (case study: Karkheh River). Indian J Sci Technol, 6(2), 4112-4115. Lai, Y. G., & Wu, K. (2018). A numerical modeling study of sediment bypass tunnels at shihmen reservoir, Taiwan. Int. J. Hydrol, 2, 72-81. Liao, C. T., Yeh, K. C., Lan, Y. C., Jhong, R. K., & Jia, Y. (2021). Improving the 2d numerical simulations on local scour hole around spur dikes. Water, 13(11), 1462. Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), 247-251. Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. Poesen, J. W., & Hooke, J. M. (1997). Erosion, flooding and channel management in Mediterranean environments of southern Europe. Progress in physical geography, 21(2), 157-199. Pratama, F., Wulandari, S., & Rohmat, F. I. W. (2025). Modeling sediment accumulation in Pare Reservoir using HEC-RAS 2D: Assessing storage capacity over a 10-year period. Results in Engineering, 104333. Parker, G. (1978). Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. Journal of Fluid mechanics, 89(1), 127-146. Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Wang, H. W., Tsai, B. S., Hwang, C., Chen, G. W., & Kuo, W. C. (2020). Efficiency of the drawdown flushing and partition desilting of a reservoir in Taiwan. Water, 12(8), 2166. Walling, D. E. (1983). The sediment delivery problem. Journal of hydrology, 65(1-3), 209-237. Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39(2), 285-291. 台灣省林務局農林航空測量所(1976),「石門水庫集水區崩坍地航測調查報告報」,台灣省石門水庫管理局。 經濟部水利署北區水資源局(2023),「秀巒防砂壩降低改造壩體初步規劃」。 行政院農業委員會水土保持局(2005),「水土保持手冊」。 錢寧(1983),「泥沙運動力學」。 經濟部水利署北區水資源局(2008),「石門水庫集水區產砂量推估與數位式集水區綜合管理研究計畫」。 經濟部水利署北區水資源局(2011),「石門水庫集水區保育治理研究綜整計畫委託專業服務」。 水利規劃試驗所(2010),「氣候變遷下台灣南部河川流域土砂處理對策研究:以高屏溪為例(1/2)」,經濟部水利署水利規劃試驗所。 陳樹群、賴益成(1999),「河川與集水區泥砂遞移率之推估研究」,中華水土保持學報,30(1),47-57。 范正成(1993),「台灣地區土壤沖蝕預測公式之囘顧、研究與展望」,水土保持學報24(2)p131-152。 吳嘉俊(1994),「臺灣水土保持因子之初步訂定」,中華水土保持學報,25(4),209-218。 林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,中興大學水土保持學系博士論文。 歐陽元淳(2003),「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,台灣大學地理環境資源研究所碩士論文。 趙倬群(2004),「石門水庫集水區崩塌土砂產量推估之研究」,台灣大學土木工程學研究所碩士論文。 李宗賢(2012),「石門水庫集水區崩塌地產沙與後續沖刷之量化研究」,台灣大學土木工程學研究所博士論文。 詹原魁(2014),「石門水庫集水區土壤沖蝕量之分析」,臺北科技大學土木與防災研究所學位論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98798 | - |
| dc.description.abstract | 臺灣多數水庫因上游地質脆弱與極端豪雨頻繁而面臨嚴重淤積,石門水庫尤甚,長年影響北部供水與庫容安全。為量化未來百年石門水庫的淤積風險,本研究整合「土壤沖蝕、崩塌產砂、二維輸砂、長期機率推估」四大模組,建構涵蓋產生、遞移至入庫的多源泥砂預測框架。研究方法利用改良之 USLE 融合 Landsat-8,經 GIS 空間運算取得坡地土壤沖蝕量,並使用全臺測站雨量行資料透過反距離權重法推算降雨沖蝕指數,提高空間推估一致性。再以 2004–2019 年航測崩塌資料與歷史沖蝕崩塌比例計算崩塌體積,並建立崩塌面積-體積關係,配合坡度百分比、順向坡率、累積崩塌率及降雨能量,以羅吉斯回歸求得各子集水區崩塌失效機率;後使用近十年雨量站資料計算流量歷線,並以 1 m DEM 建立 SRH-2D 動床模型,模擬 Q2、Q5、Q10、Q25、Q50、Q100洪水情境下白石溪的輸砂行為,估算泥砂遞移率(SDR),最後帶入 Poisson 反累積分布抽樣百年降雨事件,預測未來百年入庫泥砂量。
本研究區之 Rm 整體高於歷年文獻,而 Km 在白石溪支流顯著偏高,這突顯該區為高潛勢土壤流失熱點;坡度因子與作物管理因子於裸岩與人工構造物上仍有高估風險。羅吉斯模型顯示坡度 (SN) 與累積崩塌因子 (ELN) 為主要控制變數,三大子集水區崩塌風險皆超過 50%。SRH-2D 水位校準與觀測吻合(R²=0.9985),六組洪水情境下 SDR 均大於 0.3,證明上游泥砂流通性強。進一步將土壤沖蝕量、崩塌產砂量與 SDR 結合卜瓦松隨機抽樣百年降雨序列,預測未來百年年均入庫泥砂量約 1.5×10⁴ m³;若未搭配清淤或攔砂措施,庫容衰減仍具威脅。 創新之處在於結合坡面沖蝕、崩塌機率與二維輸砂,並透過 Poisson 降雨抽樣預測未來入庫泥砂量,讓泥砂預報兼具空間與時間解析力;資料來源如衛星影像、DEM、雨量網格等皆可定期更新,使本研究框架可移植至翡翠、曾文、鯉魚潭等高山水庫,或結合雷達雨量、UAV-LiDAR 升級為半即時泥砂預警與 AI 排砂決策系統。研究成果為石門水庫長期減淤與供水韌性提供量化依據,也為臺灣水庫在極端氣候下的治理策略開啟整合科學、工程及管理的新途徑。 | zh_TW |
| dc.description.abstract | Most Taiwanese reservoirs suffer from severe sedimentation due to fragile mountain geology and frequent typhoon downpours; Shimen Reservoir is among the most affected, jeopardizing both storage capacity and water-supply reliability in northern Taiwan. To quantify its centennial siltation risk, this study integrates four modules—hillslope soil erosion, landslide‐derived yield, two-dimensional sediment transport, and long-term probabilistic projection—into a multi-source sediment-forecasting framework that spans production, delivery, and deposition.
First, an enhanced Universal Soil Loss Equation( USLE), combined with Landsat-8 was applied in a GIS to map spatially distributed soil erosion, and nationwide rain-gauge data (interpolated using inverse-distance weighting), provides spatially consistent soil-erosion estimates. Secondly, aerial-photography landslide inventories (2004–2019) is converted to volumes via a new area–volume relation; together with slope percentage, dip-slope ratio, cumulative landslide rate, and rainfall energy feed a logistic model that yields failure probabilities for each sub-watershed. Third, ten-year rainfall data was converted into flood hydrographs, and a 1-m DEM supports an SRH-2D movable-bed model that simulates Q2, Q5, Q10, Q25, Q50, and Q100 floods on Baishih Creek to derive sediment-delivery ratios (SDR). Finally, a Poisson inverse CDF was sampled to create a 100-year stochastic rainfall series, from which future reservoir sediment inflow was estimated. Results show rainfall erosivity (Rm) is higher than previously reported and an exceptionally high soil-erodibility factor (Km) in the Baishih tributary, marking it as an erosion hotspot. Slope (SN) and cumulative landslide factor (ELN) dominate the logistic model, with failure probabilities exceeding 50 % in all three major sub-basins. SRH-2D calibration matches observed water levels (R² = 0.9985), and SDR remains above 0.3 across scenarios, indicating efficient sediment export. Combining soil-erosion and landslide yields with SDR and Poisson-sampled centennial rainfall sequences predicts a mean annual sediment inflow of roughly 1.5 × 10⁴ m³ over the next century; without dredging or check-dam intervention, storage loss will persist. The study’s novelty lies in unifying slope-scale erosion, landslide probability, and 2-D sediment transport, while introducing future climate variability via Poisson rainfall sampling, thereby delivering both spatial and temporal resolution.. By inputing such as satellite imagery, DEMs, and rainfall grids can be periodically updated, allowing rapid transfer to other mountain reservoirs (e.g., Feitsui, Zengwen, Liyutan) and integration with radar rainfall and UAV‐LiDAR for semi-real-time warning and AI-assisted desiltation. The results provide quantitative support for long-term sediment management and water-supply resilience at Shimen and open a science-based pathway for Taiwan’s reservoir governance under extreme climate change. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:14:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:14:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 目次 vii 圖次 x 表次 xi 1.緒論 1 1.1.研究動機與背景 1 1.2.研究流程 3 1.3.研究架構 5 1.4.研究區域介紹 5 2.文獻回顧 7 2.1.土砂問題與台灣現況 7 2.2.物理機制 8 2.2.1.坡面土壤沖蝕 8 2.2.2.坡地崩塌 8 2.2.3.水文傳輸 9 2.3.土砂推估與量測方式 10 2.3.1.土壤流失公式 10 2.3.2.崩塌土砂 11 2.4.水理模型比較 12 2.4.1.SRH-2D 12 2.4.2.HEC-RAS 2D 13 2.4.3.CCHE-2D 14 2.4.4.小結 15 3.研究方法 16 3.1.研究流程 16 3.2.通用土壤流失公式 18 3.2.1.降雨沖蝕性因子(Rm) 18 3.2.2.土壤沖蝕性因子(Km) 19 3.2.3.坡長因子(L) 19 3.2.4.坡度因子(S) 20 3.2.5.作物管理因子(C) 21 3.2.6.水土保持處理因子(P) 22 3.3.崩塌 23 3.3.1.面積體積法 23 3.3.2.羅吉斯回歸 24 3.3.3.水文分析 26 3.3.4.流量歷線計算 28 3.4.SRH-2D 32 3.4.1.模式介紹 32 3.4.2.控制方程式 32 3.4.3.數值方法 33 3.4.4.模式參數設定 34 3.4.5.泥砂遞移率 35 3.5.卜瓦松分布 39 4.結果與討論 41 4.1.USLE 41 4.2.崩塌土砂量 51 4.3.羅吉斯回歸 53 4.4.水理模擬成果 58 4.5.卜瓦松分布 66 4.6.討論 67 5.結論與建議 68 5.1.結論 68 5.2.建議 70 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 石門水庫 | zh_TW |
| dc.subject | 泥砂淤積 | zh_TW |
| dc.subject | 崩塌風險 | zh_TW |
| dc.subject | USLE | zh_TW |
| dc.subject | SRH-2D | zh_TW |
| dc.subject | 卜瓦松降雨抽樣 | zh_TW |
| dc.subject | Landslide Risk | en |
| dc.subject | Shimen Reservoir | en |
| dc.subject | Poisson Rainfall Sampling | en |
| dc.subject | SRH-2D | en |
| dc.subject | USLE | en |
| dc.subject | Sedimentation | en |
| dc.title | 不同水文條件下泥砂輸出與水庫淤積之數值模擬研究-以石門水庫為例 | zh_TW |
| dc.title | Numerical Modeling of Sediment Yield and Reservoir Sedimentation Under Varying Hydrological Conditions: A Case Study of the Shihmen Reservoir | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 范正成;游晟暐 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Chen Fan;Cheng-Wei Yu | en |
| dc.subject.keyword | 石門水庫,泥砂淤積,崩塌風險,USLE,SRH-2D,卜瓦松降雨抽樣, | zh_TW |
| dc.subject.keyword | Shimen Reservoir,Sedimentation,Landslide Risk,USLE,SRH-2D,Poisson Rainfall Sampling, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202503802 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
