Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98797
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉念琪zh_TW
dc.contributor.advisorNien-Chi Liuen
dc.contributor.author陳榆zh_TW
dc.contributor.authorYu Chenen
dc.date.accessioned2025-08-19T16:14:34Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationWorld Health Organization. (2022, October 1). Ageing and health. https://www.who.int/zh/news-room/fact-sheets/detail/ageing-and-health
衛生福利部國民健康署(2024)。《2024國民健康署年報》(第72頁)。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4870&pid=18702
International Council of Nurses. (2021). The global nursing shortage and nurse retention: ICN policy brief. https://www.icn.ch/sites/default/files/inline-files/ICN%20Policy%20Brief_Nurse%20Shortage%20and%20Retention.pdf
中華民國護理師護士公會全國聯合會(2025年2月27日)。護理人力告急!民眾照護堪慮!急診壅塞成國安危機。中華民國護理師護士公會全國聯合會。https://www.nurse.org.tw/publicUI/B/B10701.aspx?arg=8DD572C590EDA02071
中華民國護理師護士公會全國聯合會(2025年1月2日)。2024年護理人力統計。取自 https://nurse.org.tw/publicUI/Eng/Y108.aspx
Aiken, L. H., Clarke, S. P., Sloane, D. M., Sochalski, J., & Silber, J. H. (2002). Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. JAMA, 288(16), 1987–1993. https://doi.org/10.1001/jama.288.16.1987
Ball, J. E., Murrells, T., Rafferty, A. M., Morrow, E., & Griffiths, P. (2014). ‘Care left undone’ during nursing shifts: Associations with workload and perceived quality of care. BMJ Quality & Safety, 23(2), 116–125. https://doi.org/10.1136/bmjqs-2012-001767
Kitson, A., Marshall, A., Bassett, K., & Zeitz, K. (2013). What are the core elements of patient-centred care? A narrative review and synthesis of the literature from health policy, medicine and nursing. Journal of Advanced Nursing, 69(1), 4–15. https://doi.org/10.1111/j.1365-2648.2012.06064.x
Ng, Z. Q. P., Ling, L. Y. J., Chew, H. S. J., & Lau, Y. (2022). The role of artificial intelligence in enhancing clinical nursing care: A scoping review. Journal of nursing management, 30(8), 3654–3674. https://doi.org/10.1111/jonm.13425
Mahmoudi, H., & Moradi, M. H. (2024). The progress and future of artificial intelligence in nursing care: A review. The Open Public Health Journal, 17, e18749445304699. https://doi.org/10.2174/0118749445304699240416074458
Ruksakulpiwat, S., Thorngthip, S., Niyomyart, A., Benjasirisan, C., Phianhasin, L., Aldossary, H., Ahmed, B. H., & Samai, T. (2024). A systematic review of the application of artificial intelligence in nursing care: Where are we, and what's next? Journal of Multidisciplinary Healthcare, 17, 1603–1616. https://doi.org/10.2147/JMDH.S459946
Cato, K. D., & Tiase, V. L. (2024). Can AI relieve nursing documentation burden? American Nurse. https://www.myamericannurse.com/can-ai-relieve-nursing-documentation-burden/
Rony, M. K. K., Parvin, M. R., Wahiduzzaman, M., Debnath, M., Bala, S. D., & Kayesh, I. (2024). "I wonder if my years of training and expertise will be devalued by machines": Concerns about the replacement of medical professionals by artificial intelligence. SAGE Open Nursing, 10, 1–17. https://doi.org/10.1177/23779608241245220
Farhud, D. D., & Zokaei, S. (2021). Ethical issues of artificial intelligence in medicine and healthcare. Iranian Journal of Public Health, 50(11), i–v. https://doi.org/10.18502/ijph.v50i11.7600
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Ramadan, O. M. E., Alruwaili, M. M., Alruwaili, A. N., Elsehrawy, M. G., & Alanazi, S. (2024). Facilitators and barriers to AI adoption in nursing practice: a qualitative study of registered nurses’ perspectives. BMC Nursing, 23, Article 891. https://doi.org/10.1186/s12912-024-02571-y
Lin, H.-L., Liao, L.-L., Wang, Y.-N., & Chang, L.-C. (2025). Attitude and utilization of ChatGPT among registered nurses: A cross-sectional study. International Nursing Review, 72, e13012. https://doi.org/10.1111/inr.13012
Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and individual performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689
Zheng, R., Jiang, X., Shen, L., He, T., Ji, M., Li, X., & Yu, G. (2025). Investigating clinicians’ intentions and influencing factors for using an intelligence-enabled diagnostic clinical decision support system in health care systems: Cross-sectional survey. Journal of Medical Internet Research, 27, e62732. https://doi.org/10.2196/62732
Bagot, K. L., Moloczij, N., Arthurson, L., Hair, C., Hancock, S., Bladin, C. F., & Cadilhac, D. A. (2020). Nurses’ role in implementing and sustaining acute telemedicine: A mixed‐methods, pre‐post design using an extended Technology Acceptance Model. Journal of Nursing Scholarship, 52(1), 34–46. https://doi.org/10.1111/jnu.12509
Sturm, T., & Peters, F. (2020). The impact of artificial intelligence on individual performance: Exploring the fit between task, data, and technology. Proceedings of the European Conference on Information Systems (ECIS 2020). https://aisel.aisnet.org/ecis2020_rp/200
Huang, K., Jiao, Z., Cai, Y., & Zhong, Z. (2022). Artificial intelligence-based intelligent surveillance for reducing nurses’ working hours in nurse–patient interaction: A two-wave study. Journal of Nursing Management, 30(8), 3817–3826. https://doi.org/10.1111/jonm.13787
Rony, M. K. K., Alrazeeni, D. M., Akter, F., Nesa, L., Das, D. C., Uddin, M. J., ... & Parvin, M. R. (2024). The role of artificial intelligence in enhancing nurses’ work-life balance. Journal of Medicine, Surgery, and Public Health, 3, 100135. https://doi.org/10.1016/j.glmedi.2024.100135
Gandhi, T. K., Classen, D., Sinsky, C. A., Rhew, D. C., Vande Garde, N., Roberts, A., & Federico, F. (2023). How can artificial intelligence decrease cognitive and work burden for front line practitioners? JAMIA Open, 6(3), ooad079. https://doi.org/10.1093/jamiaopen/ooad079
World Economic Forum. (2025). The future of jobs report 2025. World Economic Forum. https://www.weforum.org/reports/the-future-of-jobs-report-2025/
Organisation for Economic Co-operation and Development. (2023). Artificial intelligence in work, innovation, productivity and skills. OECD Publishing. https://doi.org/10.1787/8d900037-en
U.S. Department of the Treasury. (2024). Agency Financial Report: Fiscal Year 2024. https://home.treasury.gov/system/files/266/Treasury-FY-2024-AFR-111524.pdf
International Monetary Fund. (2024). World Economic Outlook: Policy Pivot, Rising Threats. https://www.imf.org/en/Publications/WEO/Issues/2024/10/22/world-economic-outlook-october-2024
Junaid, S. B., Imam, A. A., Shuaibu, A. N., Basri, S., Kumar, G., Surakat, Y. A., Balogun, A. O., Abdulkarim, M., Garba, A., Sahalu, Y., et al. (2022). Artificial intelligence, sensors and vital health signs: A review. Applied Sciences, 12(22), 11475. https://doi.org/10.3390/app122211475
Aasvang, E. K., & Meyhoff, C. S. (2023). The future of postoperative vital sign monitoring in general wards: Improving patient safety through continuous artificial intelligence-enabled alert formation and reduction. Current Opinion in Anesthesiology, 36(6), 683–690. https://doi.org/10.1097/ACO.0000000000001319
Ganesan, O., Morris, M. X., Guo, L., & Orgill, D. (2024). A review of artificial intelligence in wound care. Artificial Intelligence Surgery, 4, 364–375. https://doi.org/10.20517/ais.2024.68
Rony, R. Y., Rahman, M. M., & Hossain, M. S. (2023). Advancing nursing practice with artificial intelligence: Enhancing preparedness for the future. Nursing Open, 10(6), 3072–3082. https://doi.org/10.1002/nop2.2070
Dağcı, M., Çam, F., & Dost, A. (2024). Reliability and quality of the nursing care planning texts generated by ChatGPT. Nurse Educator, 49(3), E109–E114. https://doi.org/10.1097/NNE.0000000000001566
Gonzalez-Garcia, A., Pérez-González, S., Benavides, C., Pinto-Carral, A., Quiroga-Sánchez, E., & Marqués-Sánchez, P. (2024). Impact of Artificial Intelligence–Based Technology on Nurse Management: A Systematic Review. Journal of Nursing Management, Article ID 3537964. https://doi.org/10.1155/2024/3537964
Leung, F., Lau, Y.-C., Law, M., & Djeng, S.-K. (2022). Artificial intelligence and end user tools to develop a nurse duty roster scheduling system. International Journal of Nursing Sciences, 9(4), 373–377. https://doi.org/10.1016/j.ijnss.2022.06.013
Liao, P.-H., Hsu, P.-T., Chu, W., & Chu, W.-C. (2015). Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan. Health Informatics Journal, 21(2), 137–148. https://doi.org/10.1177/1460458213509806
Lee, T.-Y., Li, C.-C., Chou, K.-R., Chung, M.-H., Hsiao, S.-T., Guo, S.-L., Hung, L.-Y., & Wu, H.-T. (2023). Machine learning–based speech recognition system for nursing documentation: A pilot study. International Journal of Medical Informatics, 178, 105213. https://doi.org/10.1016/j.ijmedinf.2023.105213
Lu, A.-T., Liou, C.-S., Lai, C.-H., Shian, B.-T., Li, M.-T., Sun, C.-Y., Kao, H.-Y., Dai, H.-J., & Tsai, M.-J. (2025). Application of clinical department–specific AI-assisted coding using Taiwan diagnosis-related groups: Retrospective validation study. JMIR Human Factors, 12, e59961. https://doi.org/10.2196/59961
Chang, C.-Y., Jen, H.-J., & Su, W.-S. (2022). Trends in artificial intelligence in nursing: Impacts on nursing management. Journal of Nursing Management, 30(8), 3644–3653. https://doi.org/10.1111/jonm.13770
Cheng, C.-I., Lin, W.-J., Liu, H.-T., Chen, Y.-T., Chiang, C.-K., & Hung, K.-Y. (2023). Implementation of artificial intelligence Chatbot in peritoneal dialysis nursing care: Experience from a Taiwan medical center. Nephrology, 28(6), 655–662. https://doi.org/10.1111/nep.14239
Chen, Y.-H., & Xu, J.-L. (2023). Applying artificial intelligence to predict falls for inpatient. Frontiers in Medicine, 10, 1285192. https://doi.org/10.3389/fmed.2023.1285192
Lin, H.-L., Liao, L.-L., Wang, Y.-N., & Chang, L.-C. (2025). Attitude and utilization of ChatGPT among registered nurses: A cross-sectional study. International Nursing Review, 72, e13012. https://doi.org/10.1111/inr.13012
Liao, C.-T., Tsay, S.-F., & Chen, H.-C. (2024). Exploring generative AI’s role in alleviating nursing workload and burnout in Taiwan. Journal of the Formosan Medical Association, 123(6), 736–737. https://doi.org/10.1016/j.jfma.2024.02.003
Torab-Miandoab, A., Samad-Soltani, T., Jodati, A., & Rezaei-Hachesu, P. (2023). Interoperability of heterogeneous health information systems: A systematic literature review. BMC Medical Informatics and Decision Making, 23, Article 18. https://doi.org/10.1186/s12911-023-02115-5
Mohsen, F., Ali, H., El Hajj, N., & Shah, Z. (2022). Artificial intelligence-based methods for fusion of electronic health records and imaging data. Scientific Reports, 12, Article 17981. https://doi.org/10.1038/s41598-022-22514-4
Gerke, S., Minssen, T., & Cohen, I. G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (pp. 295–336). Elsevier. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Price, W. N. II, & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37–43. https://doi.org/10.1038/s41591-018-0272-7
Cestonaro, C., Delicati, A., Marcante, B., Caenazzo, L., & Tozzo, P. (2023). Defining medical liability when artificial intelligence is applied on diagnostic algorithms: A systematic review. Frontiers in Medicine, 10, Article 1305756. https://doi.org/10.3389/fmed.2023.1305756
Sandanasamy, S., McFarlane, P., Okamoto, Y., & Couper, A. L. (2025). Nurses' knowledge and attitudes towards artificial intelligence and related factors: A systematic review. Journal of Nursing Reports in Clinical Practice, 3(5), 486–493. https://www.jnursrcp.com/article_217752.html
Alruwaili, M. M., Abuadas, F. H., Alsadi, M., Alruwaili, A. N., Ramadan, O. M. E., Shaban, M., Al Thobaity, A., Alkahtani, S. M., & El Arab, R. A. (2024). Exploring nurses’ awareness and attitudes toward artificial intelligence: Implications for nursing practice. Digital Health, 10, 1–10. https://doi.org/10.1177/20552076241271803
Clancy, T. R. (2020). Artificial intelligence and nursing: The future is now. Journal of Nursing Administration, 50(3), 125–127. https://doi.org/10.1097/NNA.0000000000000855
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98797-
dc.description.abstract面對全球高齡化與護理人力短缺的雙重壓力,醫療體系急需創新解方以提升照護效率與品質。人工智慧(Artificial Intelligence, AI)技術的快速發展為護理領域帶來了潛在契機,尤其在臨床決策支持、文書處理自動化、病人監測與教育訓練等層面展現應用價值。然而,AI 在臨床護理的實際滲透仍相對有限,並受限於技術接受度、任務適配性與倫理法規等因素。本研究採質性研究法,針對七位具三年以上臨床經驗之護理人員進行半結構式深度訪談,探討AI 技術應用於護理工作的適配情形與接受態度。研究發現,護理人員對AI 應用持保守樂觀態度,若系統具備高可用性與易用性,且能貼合臨床任務需求,將提升其採用意願;反之,若AI 結果缺乏透明性或需耗費額外修正時間,則易降低其信任感與使用動機。研究亦指出管理層應重視使用者參與與教育訓練,以因應AI 導入所引發的角色重塑與職能轉變。此研究結果可供醫療機構在推動智慧護理與數位轉型政策時參考。zh_TW
dc.description.abstractFacing the dual challenges of global aging and nursing workforce shortages, healthcare systems are in urgent need of innovative strategies to enhance care quality and efficiency. The rapid advancement of Artificial Intelligence (AI) presents potential solutions in nursing, particularly in clinical decision support, documentation automation, patient monitoring, and training. However, the integration of AI into
clinical nursing remains limited due to issues of acceptance, task-technology fit, and ethical concerns. This study employed a qualitative research method involving semistructured interviews with seven nurses with over three years of clinical experience, exploring their perceptions and experiences regarding AI adoption. Findings reveal that while most nurses hold a cautiously optimistic attitude toward AI, their willingness to adopt such tools hinges on perceived usefulness, ease of use, and alignment with nursing tasks. Conversely, lack of output transparency or additional effort for manual correction undermines trust and motivation. The study further highlights the importance of involving end-users and providing adequate training to facilitate role transitions. These insights offer practical implications for healthcare administrators advancing smart nursing and digital transformation initiatives.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:14:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:14:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ...........................................................................................i
ABSTRACT ..........................................................................................ii
目次 .............................................................................................. iii
圖次 .............................................................................................. iv
表次 .............................................................................................. iv
第一章 緒論 ........................................................................................ 1
第一節 研究動機 ..................................................................................... 1
第二節 研究目的 ..................................................................................... 2
第二章 文獻探討 ..................................................................................... 4
第一節 人工智慧技術的對工作的影響 ..................................................................... 4
第二節 護理工作概述 .................................................................................. 5
第三節 AI 技術在護理工作的應用與台灣現況 .............................................................. 10
第四節 AI 技術在醫療面臨的限制與挑戰 .................................................................. 14
第五節 Technology Acceptance Model ................................................................. 15
第六節 護理人員對 AI 的接受度 ........................................................................ 17
第三章 研究方法 ..................................................................................... 20
第一節 研究設計 ..................................................................................... 20
第二節 研究參與者 ................................................................................... 20
第三節 研究工具說明 ................................................................................. 21
第四節 研究資料 ..................................................................................... 22
第四章 研究結果 ..................................................................................... 23
第一節 AI 技術的使用經驗 ............................................................................. 23
第二節 護理師對AI 技術的認知、使用態度與意圖 ........................................................... 31
第三節 護理師對AI 工具與護理工作適配度的想法 ........................................................... 33
第五章 研究討論 ...................................................................................... 37
第一節 護理師對AI 技術的認知與態度如何影響使用行為 ...................................................... 37
第二節 基於 Task-Technology Fit (TTF) 理論的洞察 ...................................................... 40
第三節 其他關鍵影響因子 ............................................................................... 41
第四節 AI 科技進入護理實務的挑戰與契機 ................................................................. 43
第五節 AI 工具對護理職場環境的影響 ..................................................................... 45
第六章 研究結論 ...................................................................................... 47
第一節 研究結果與討論回應研究問題 ...................................................................... 47
第二節 管理意涵 ...................................................................................... 51
第三節 研究限制與未來研究方向 ......................................................................... 53
參考文獻 ............................................................................................ 56
附錄 ............................................................................................... 62
-
dc.language.isozh_TW-
dc.subject人工智慧zh_TW
dc.subject護理工作zh_TW
dc.subject科技接受模型(TAM)zh_TW
dc.subject任務-技術適配 (TTF)zh_TW
dc.subject護理人力zh_TW
dc.subject智慧醫療zh_TW
dc.subjectSmart Healthcareen
dc.subjectArtificial Intelligenceen
dc.subjectNursing Worken
dc.subjectTechnology Acceptance Modelen
dc.subjectTask- Technology Fiten
dc.subjectNursing Workforceen
dc.titleAI 技術在護理工作的應用性探討zh_TW
dc.titleAssessing the Applicability of Artificial Intelligence in Clinical Nursingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳寶蓮;陳怡靜zh_TW
dc.contributor.oralexamcommitteePao-Lien Chen;Yi-Ching Chenen
dc.subject.keyword人工智慧,護理工作,科技接受模型(TAM),任務-技術適配 (TTF),護理人力,智慧醫療,zh_TW
dc.subject.keywordArtificial Intelligence,Nursing Work,Technology Acceptance Model,Task- Technology Fit,Nursing Workforce,Smart Healthcare,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202503812-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf702.19 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved