請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | Apinan Soottitantawat | zh_TW |
| dc.contributor.advisor | Apinan Soottitantawat | en |
| dc.contributor.author | Wasupol Saksritiwa | zh_TW |
| dc.contributor.author | Wasupol Saksritiwa | en |
| dc.date.accessioned | 2025-08-19T16:13:21Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | 1. Ma, X., et al., Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review. Energy Conversion and Management, 2021. 229.
2. Singh, D., et al., A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 2020. 262. 3. Marinković, D.M., et al., Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 2016. 56: p. 1387-1408. 4. Ma, Y., et al., Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism. Renewable Energy, 2016. 86: p. 643-650. 5. Li, H., et al., The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production. Energy Conversion and Management, 2015. 103: p. 57-65. 6. Amini, Z., et al., State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management, 2017. 141: p. 339-353. 7. Al-Zuhair, S., F.W. Ling, and L.S. Jun, Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochemistry, 2007. 42(6): p. 951-960. 8. Hincapié, G., F. Mondragón, and D. López, Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel, 2011. 90(4): p. 1618-1623. 9. Guldhe, A., et al., Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 2017. 187: p. 180-188. 10. Xie, W., X. Yang, and M. Fan, Novel solid base catalyst for biodiesel production: Mesoporous SBA-15 silica immobilized with 1,3-dicyclohexyl-2-octylguanidine. Renewable Energy, 2015. 80: p. 230-237. 11. Cai, X., et al., Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020. 417. 12. Cai, G., et al., Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting. Chem, 2017. 2(6): p. 791-802. 13. Zheng, Y., X. Chen, and Y. Shen, Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock. Chemical Reviews, 2010. 110(3): p. 1807-1807. 14. Corma, A., et al., Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 2005. 234(2): p. 340-347. 15. Elgharbawy, A.S., et al., Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 2021. 284. 16. Wang, P., et al., MOF derived mesoporous K-ZrO2 with enhanced basic catalytic performance for Knoevenagel condensations. RSC Advances, 2017. 7(88): p. 55920-55926. 17. Krog, N.J., Food emulsifiers and their chemical and physical properties. 1997(Marcel Dekker Inc., New York): p. 112–118. 18. Susi, H., Morris, S.G., Scott, W.E., Differentiation of 1- and 2-monoglycerides by near-infrared absorption spectroscopy. J. Am. Oil Chem. Soc, 1961. 38: p. 199–201. 19. Miao, S. and D. Lin, Monoglycerides: Categories, Structures, Properties, Preparations, and Applications in the Food Industry, in Encyclopedia of Food Chemistry. 2019. p. 155-163. 20. Y Pouilloux, S.A., C Vanhove, J Barrault, Reaction of glycerol with fatty acids in the presence of ion-exchange resins: Preparation of monoglycerides. Journal of Molecular Catalysis A: Chemical, 1999. 149(1-2): p. 243-254. 21. Fregolente, L.V., et al., Effect of Operating Conditions on the Concentration of Monoglycerides Using Molecular Distillation. Chemical Engineering Research and Design, 2007. 85(11): p. 1524-1528. 22. Kaur, L., J. Singh, and N. Singh, Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 2005. 19(5): p. 839-849. 23. Kumoro, A.C., Experimental and modeling studies of the reaction kinetics of alkaline-catalyzed used frying oil glycerolysis using isopropyl alcohol as a reaction solvent. Research Journal of Applied Sciences, Engineering and Technology, 2012. 4: p. 869-876. 24. Felizardo, P., et al., Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Processing Technology, 2011. 92(6): p. 1225-1229. 25. A. Corma, S.I., S. Miquel, and J. Primo, Catalysts for the production of fine chemicals : production of food emulsifiers, monoglycerides, by glycerolysis of fats with solid base catalysts. J. Catal. 1, 1998. 173: p. 173,. 26. Sonntag, N.O.V., Glycerolysis of fats and methyl esters — Status, review and critique. Journal of the American Oil Chemists Society volume 1982. 229: p. 795A–802A. 27. López, D.E., et al., Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General, 2005. 295(2): p. 97-105. 28. Ferretti, C.A., et al., Monoglyceride synthesis by glycerolysis of methyl oleate on MgO: Catalytic and DFT study of the active site. Applied Catalysis A: General, 2012. 413-414: p. 322-331. 29. Catalysis. Encyclopedia of Materials: Science and Technology: p. 1020–1026. 30. Yuguo Zheng, X.C., and Yinchu Shen, Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock. Chem. Rev, 2008. 108: p. 5253–5277 31. Alaei, S., et al., Conventional vs. hybrid methods for dispersion of MgO over magnetic Mg–Fe mixed oxides nanocatalyst in biofuel production from vegetable oil. Renewable Energy, 2020. 154: p. 1188-1203. 32. Handbook of Heterogeneous Catalysis. 33. Freitas, L., Paula, A.V., dos Santos, J.C., Zanin, G.M., de Castro, H.F., Enzymatic synthesis of monoglycerides by esterification reaction using Penicillium camembertii lipase immobilized on epoxy SiO2-PVA composite. J. Mol. Catal. B Enzym., 2010. 65: p. 87–90. 34. Lin, X., Chuah, G.K., Jaenicke, S., Base-functionalized MCM-41 as catalysts for the synthesis of monoglycerides. J. Mol. Catal. A Chem., 1999. 150: p. 287–294. 35. Avander, P., Jtf, K., Jjw, S., Emvan, D., Ljvan, D., Kvan’t, R.,, Enzymatic synthesis of monoglycerides in a membrane bioreactor with an in-line adsorption column. J. Am. Oil Chem. Soc, 1992. 69: p. 748–754. 36. Ferey, G., Hybrid porous solids: past, present, future. Chem Soc Rev, 2008. 37(1): p. 191-214. 37. Jasmina Hafizovic Cavka, S.J., † Unni Olsbye,† Nathalie Guillou,‡ Carlo Lamberti,§ and a.K.P.L. Silvia Bordiga, †, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. 2008(130): p. 13850–13851. 38. Xiaoling Ma a, F.L.b., Yaxin Helian b, Chaorui Li c, Zhongjie Wu d, Hui Li b,* and H.C.b. , Yongbo Wang b, Yangyang Wang b, Wanpeng Lu b, Min Guo b, Mingzhi Yu b, Shoujun Zhou b Current application of MOFs based heterogeneous catalysts in catalyzing transesterification /esterification for biodiesel production: A review Energy Conversion and Management, 2021. 229. 39. Ferretti, C.A., et al., Monoglyceride synthesis by glycerolysis of methyl oleate on solid acid–base catalysts. Chemical Engineering Journal, 2010. 161(3): p. 346-354. 40. Belelli, P.G., et al., Glycerolysis of methyl oleate on MgO: Experimental and theoretical study of the reaction selectivity. Journal of Catalysis, 2015. 323: p. 132-144. 41. Kimmel, T., Kinetic investigation of the base-catalyzed glycerolysis of fatty acid methyl esters. Institut fur Chemie, TU, Berlin, Germany,, 2004. 42. Muraza, O., Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry,, 2019: p. 7. 43. Valenzano, L., et al., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011. 23(7): p. 1700-1718. 44. Dong, Z., et al., Solvent-Treated Zirconium-Based Nanoporous UiO-66 Metal–Organic Frameworks for Enhanced CO2 Capture. ACS Applied Nano Materials, 2023. 6(13): p. 12159-12167. 45. Winarta, J., et al., A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth & Design, 2019. 20(2): p. 1347-1362. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98792 | - |
| dc.description.abstract | 本研究探討了基於金屬有機骨架 (MOF) UiO-66 的介孔 K-ZrO2 催化劑的合成、表徵及其催化棕櫚酸甲酯和甘油的甘油解反應性能。K-ZrO2 催化劑採用浸漬法製備,其中 UiO-66 負載不同量(60、120 和 180 毫克)的硝酸鉀 (KNO3),然後進行兩步鍛燒。首先在氮氣保護下分別在 550°C、650°C 和 750°C 的溫度下鍛燒,然後在空氣中加熱至 400°C。對所得催化劑進行 X 射線衍射 (XRD)、傅立葉轉換紅外光譜 (FTIR)、熱重分析 (TGA)、Brunauer-Emmette-Teller (BET) 物理吸附 N2 以及掃描電子顯微鏡和能量色散 X 射線光譜儀 (SEM-EDS) 技術表徵,以分析其結晶度、熱穩定性、表面積、形態和元素組成。在間歇反應器中評估催化性能,條件為:溫度為 220°C,甘油與棕櫚酸甲酯的莫耳比為 1:1,催化劑重量百分比為催化劑重量佔棕櫚酸甲酯重量的 1%,反應時間為 7 小時。結果表明,K-ZrO2 催化劑的性能優於空白 UiO-66。介孔 K-ZrO2-120-650 催化劑具有最高的鹼度(1.80 mmol/g 來自弱鹼性位點,0.25 mmol/g 來自強鹼性位點)和 BET 表面積(78.85 m2/g),單甘油酯產率最高,為 21.98%,雙甘油酯產率最高,為 29.13%,棕櫚酸甲酯轉化率最高,為 99.08%。研究結果表明,UiO-66 衍生的 K-ZrO2 可以從生物柴油副產品中持續生產增值甘油酯。 | zh_TW |
| dc.description.abstract | This study explores the synthesis, characterization, and catalytic performance of mesoporous K-ZrO2 catalysts derived from the metal-organic framework (MOF) UiO-66 for glycerolysis of methyl palmitate and glycerol. The K-ZrO2 catalyst prepared with impregnation method, where UiO-66 was loaded with different amounts (60, 120 and 180 mg) of potassium nitrate (KNO3) followed by a two-step calcination. First under nitrogen at different temperatures 550°C, 650°C and 750°C and subsequent heating in air 400°C. The resulting catalysts were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Physisorption of N2 was performed from Brunauer-Emmette-Teller (BET) and Scanning Electron Microscope and energy dispersive X-ray spectrometer (SEM-EDS) techniques to analyze its crystallinity, thermal stability, surface area, and morphology and elemental composition. Catalytic performance was evaluated in a batch reactor under conditions Temperature at 220 °C, 1:1 molar ratio between glycerol and methyl palmitate, catalyst 1 percent weight compared weight catalyst to weight methyl palmitate, reaction time 7 hours. Results showed that K-ZrO2 catalysts outperformed compared to the blank UiO-66. the mesoporous K-ZrO2-120-650 catalyst has the highest basicity (1.80 mmol/g form weak sites and 0.25 mmol/g form strong sites) and BET surface area (78.85m2/g) achieving the highest monoglyceride yield at 21.98%, diglyceride yield at 29.13% and conversion of methyl palmitate at 99.08 %. The findings suggest that UiO-66 derived K-ZrO2 is sustainable production of value-added glycerides from biodiesel byproducts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:13:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:13:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgement ii Abstract iii 摘要 v Content vi List of Tables viii List of Figures ix Chapter1 Introduction 1 1.1 Background and significance of this study 1 1.2 Objectives 3 1.3 Scope of work 3 1.4 Benefits of this research 4 Chapter 2 Theories and methods 5 2.1 The importance and usefulness of monoglycerides and diglycerides. 5 2.2 Preparation method of monoglyceride 8 2.2.1 Direct esterification of glycerol with fatty acids 8 2.2.2 Glycerolysis of triglycerides with glycerol 9 2.2.3 Glycerolysis of fatty acid methyl ester with glycerol 10 2.3 Significance of the catalyst. 10 2.3.1 Homogenous catalysis 11 2.3.2 Heterogeneous catalysis 11 2.3.3 Enzymatic catalysis 12 2.3.4 Metal-organic framework (MOFs) catalyst type UiO-66 (MOF derived K-ZrO2) 12 2.4 Effects of variables on glycerolysis of methyl ester reaction. 14 2.4.1 The effect of impeller speed on the glycerolysis methyl ester reaction 14 2.4.2 The effect of mole ratios of reactants on the glycerolysis of methyl esters 14 2.4.3 The effect of temperature on the glycerolysis of methyl ester reaction 15 2.4.4 The effect of catalyst dosage on the glycerolysis of methyl ester reaction 16 2.4.5 The effect of the catalyst acid–base properties the glycerolysis of methyl ester reaction 17 Chapter 3 Methodology 19 3.1 Chemicals used in experiments. 19 3.2 Catalyst 19 3.2.1 Catalyst preparation 19 3.2.2 Catalyst characterization 21 3.3 Experiments methyl palmitate glycerolysis reactions 23 3.4 Analysis of monopalmitin content, dipalmitin, and tripalmitin 24 3.4.1 Preparation of measurement standards 24 3.4.2 Preparation of samples for sampling and quantification by gas chromatography 25 3.4.3 Quantitative analysis of monopalmitin, dipalmitin, and tripalmitin using gas chromatography. 25 3.5 Analysis of methyl palmitate 26 Chapter 4 Result and discussion 27 4.1.Catalyst characterization 27 4.1.1 X-Ray Diffractometer; Bruker AXS Model D8 Discover 27 4.1.2 Fourier-Transform Infrared Spectroscopy (FTIR) 30 4.1.3 Thermogravimetric Analysis (TGA) 31 4.1.4 Physisorption of N2 was performed from Brunauer-Emmette-Teller (BET, Micromeritics, ASAP 2010). 32 4.1.5 Scanning Electron Microscope and energy dispersive X-ray spectrometer (SEM-EDS) 36 4.1.6 Carbon Dioxide Temperature-Programmed Desorption (CO2-TPD) 38 4.2. Catalytic perform in glycerolysis reaction 39 Chapter 5 Conclusion 43 Chapter 6 Future work 45 Reference 46 Appendix 50 A.1 Characteristics of substances involved in the glycerolysis reaction of methyl palmitate 50 A.2 Calculation of the amounts of reactants and catalysts used in the reaction of glycerolysis of methyl palmitate. 50 A.3 Calculation of product yield 54 VITA 56 | - |
| dc.language.iso | en | - |
| dc.subject | 甘油解 | zh_TW |
| dc.subject | 單甘油酯生產 | zh_TW |
| dc.subject | 棕櫚酸甲酯 | zh_TW |
| dc.subject | K-ZrO2觸媒 | zh_TW |
| dc.subject | UiO-66 | zh_TW |
| dc.subject | 觸媒鑑定 | zh_TW |
| dc.subject | methyl palmitate | en |
| dc.subject | K-ZrO2 catalyst | en |
| dc.subject | UiO-66 | en |
| dc.subject | monoglyceride production | en |
| dc.subject | catalyst characterization | en |
| dc.subject | glycerolysis | en |
| dc.title | 以UiO-66擔載K-ZrO2觸媒進行棕櫚酸甲酯之甘油解反應 | zh_TW |
| dc.title | Glycerolysis of Methyl Palmitate using UiO-66 Derived K-ZrO2 as Catalyst | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 吳紀聖 | zh_TW |
| dc.contributor.coadvisor | Jeffrey Chi-Sheng Wu | en |
| dc.contributor.oralexamcommittee | Akawat Sirisuk;Rungthiwa Methaapanon;Kanokwan Ngaosuwan | zh_TW |
| dc.contributor.oralexamcommittee | Akawat Sirisuk;Rungthiwa Methaapanon;Kanokwan Ngaosuwan | en |
| dc.subject.keyword | 棕櫚酸甲酯,甘油解,UiO-66,K-ZrO2觸媒,觸媒鑑定,單甘油酯生產, | zh_TW |
| dc.subject.keyword | methyl palmitate,glycerolysis,UiO-66,K-ZrO2 catalyst,catalyst characterization,monoglyceride production, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202504005 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
