Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98784
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈家賢zh_TW
dc.contributor.advisorChia-Hsien Shenen
dc.contributor.author吳盈霖zh_TW
dc.contributor.authorYing-Lin Wuen
dc.date.accessioned2025-08-19T16:11:21Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation[1] R. Alonso, E. E. Jenkins, and A. V. Manohar. A geometric formulation of higgs effective field theory: Measuring the curvature of scalar field space. Physics Letters B, 754:335–342, Mar. 2016.
[2] R. Alonso and M. West. Roads to the standard model. Phys. Rev. D, 105:096028, May 2022.
[3] Z. Bern and Y.-t. Huang. Basics of generalized unitarity. Journal of Physics A: Mathematical and Theoretical, 44(45):454003, Oct. 2011.
[4] C. Cheung, A. Helset, and J. Parra-Martinez. Geometric soft theorems. Journal of High Energy Physics, 2022(4), Apr. 2022.
[5] T. Cohen, N. Craig, X. Lu, and D. Sutherland. Unitarity violation and the geometry of higgs efts. JHEP, 03:050, 2022.
[6] T. Cohen, N. Craig, X. Lu, and D. Sutherland. On-shell covariance of quantum field theory amplitudes. Physical Review Letters, 130(4), Jan. 2023.
[7] T. Cohen, X. Lu, and D. Sutherland. On amplitudes and field redefinitions, 2023.
[8] R. E. Cutkosky. Singularities and Discontinuities of Feynman Amplitudes. J. Math. Phys., 1(5):429–433, 1960
[9] A. Helset, E. E. Jenkins, and A. V. Manohar. Geometry in scattering amplitudes. Physical Review D, 106(11), Dec. 2022.
[10] U. Müller, C. Schubert, and A. E. M. van de Ven. A closed formula for the riemann normal coordinate expansion. arXiv preprint gr-qc/9712092, 1999. Version 2, submitted on 20 Dec 1999.
[11] R. Nagai, M. Tanabashi, K. Tsumura, and Y. Uchida. Symmetry and geometry in a generalized higgs effective field theory: Finiteness of oblique corrections versus perturbative unitarity. Physical Review D, 100(7), Oct. 2019.
[12] G. Passarino and M. Veltman. One-loop corrections for e+e− → μ+μ− in the weinberg model. Nucl. Phys. B, 160:151–207, 1979.
[13] M. E. Peskin and D. V. Schroeder. An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995.
[14] M. D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, 2014
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98784-
dc.description.abstract散射振幅的幾何表達式相較於傳統公式更為簡潔且計算效率更高,學界對於這類結構也已經有了不少研究。我們的目標是透過具體計算,探討這類的幾何表示是否也適用於一圈的結構。我們計算了純量有效場論的所有一圈振幅,在前人已建立樹圖階級振幅幾何結構的基礎上,進一步推導了一圈階級的結果。我們採用了費曼圖方法和廣義么正性方法,成功得到一個自洽的幾何表達式。兩種不同方法的結果完全吻合,證實了我們研究結果的可靠性。zh_TW
dc.description.abstractThis work is motivated by the observation that geometric representations of amplitudes are often more compact and computationally efficient than traditional formulations. Given the growing interest in exploring such structures, we investigate whether a similar representation can be achieved at the one-loop level through explicit calculation. In this thesis, we compute the one-loop amplitude of a scalar effective field theory (EFT) Lagrangian. Previous studies have established the geometric structure of tree-level amplitudes. By employing both Feynman diagram techniques and the generalized unitaritymethod, we derive a compact geometric expression for the one-loop result. We explicitly verify the consistency between the two approaches, confirming the correctness of our result.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:11:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:11:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
2.1 Amplitude and field redefinition 3
2.2 Model 6
2.3 Tree-level amplitude 8
Chapter 3 Normal coordinates 13
Chapter 4 Tensor integral and scalar integral reduction 19
4.1 Tensor integral reduction 19
4.1.1 Bubble integrals 20
4.1.1.1 Rank-1 bubble 20
4.1.1.2 Rank-2 bubble 21
4.1.2 Triangle integrals 23
4.1.2.1 Rank-1 triangle 23
4.2 Scalar integral reduction 24
4.2.1 Bubble integrals 25
4.2.2 Triangle integrals 26
4.2.3 Box integrals 29
Chapter 5 Review of Unitarity Methods 31
Chapter 6 4-point 1-loop amplitude from generalized unitarity 39
6.1 Box integral 39
6.2 Triangle integral 41
6.2.1 triangle (s) 41
6.2.2 triangle (t) 43
6.2.3 triangle (u) 44
6.3 Bubble integral 45
6.3.1 bubble(s) 45
6.3.2 bubble(t) 48
6.3.3 bubble(u) 49
Chapter 7 Feynman diagram 53
7.1 Box diagrams 53
7.1.0.1 (1,2)box 53
7.1.1 (1,3)box 54
7.1.2 (1,4)box 55
7.2 Triangle diagrams 56
7.2.1 triangle(s) 56
7.2.2 triangle(s’) 58
7.2.3 triangle(t) 59
7.2.4 triangle(t’) 60
7.2.5 triangle(u) 61
7.2.6 triangle(u’) 62
7.3 Bubble diagrams 63
7.3.1 bubble(s) 64
7.3.2 bubble(t) 67
7.3.3 bubble(u) 69
Chapter 8 Discussion 73
8.1 Massless bubble 73
8.2 Normal coordinate 75
Chapter 9 Conclusion and outlook 77
References 79
Appendix A — Riemann curvature contractions 81
-
dc.language.isoen-
dc.subject幾何zh_TW
dc.subject散射振幅zh_TW
dc.subject等效場論zh_TW
dc.subject協變zh_TW
dc.subjectEffective Field Theoryen
dc.subjectcovarianten
dc.subjectgeometryen
dc.subjectscattering amplitudeen
dc.title一圈之幾何結構zh_TW
dc.titleGeometry at one loopen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃宇廷;林豐利zh_TW
dc.contributor.oralexamcommitteeYu-Tin Huang;Feng-Li Linen
dc.subject.keyword散射振幅,幾何,協變,等效場論,zh_TW
dc.subject.keywordscattering amplitude,geometry,covariant,Effective Field Theory,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202504063-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved