Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author張宇zh_TW
dc.contributor.authorYu Changen
dc.date.accessioned2025-08-19T16:11:06Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] Wafaa Boumya, Nawal Taoufik, Mounia Achak, and Noureddine Barka. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. Journal of Pharmaceutical Analysis, 11(2):138–154, 2021.
[2] Hoang Nhat Phong Vo, Gia Ky Le, Thi Minh Hong Nguyen, Xuan-Thanh Bui, Khanh Hoang Nguyen, Eldon R Rene, Thi Dieu Hien Vo, Ngoc-Dan Thanh Cao, and Raj Mohan. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236:124391, 2019.
[3] Laura James, Janice E Sullivan, and Dean Roberts. The proper use of acetaminophen. Paediatrics & child health, 16(9):544–547, 2011.
[4] LF Prescott. Kinetics and metabolism of paracetamol and phenacetin. British journal of clinical pharmacology, 10(S2):291S–298S, 1980.
[5] Junhua Li, Jinlong Liu, Gongrong Tan, Jianbo Jiang, Sanjun Peng, Miao Deng, Dong Qian, Yonglan Feng, and Youcai Liu. High-sensitivity paracetamol sensor based on pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosensors and Bioelectronics, 54:468–475, 2014.
[6] Abbas Afkhami, Hosein Khoshsafar, Hasan Bagheri, and Tayyebeh Madrakian. Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–cofe2o4 nancomposite modified carbon paste electrode. Sensors and Actuators B: Chemical, 203:909–918, 2014.
[7] Webber Wei-Po Lai, Yen-Ching Lin, Hsin-Hsin Tung, Shang-Lien Lo, and Angela Yu-Chen Lin. Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in kinmen. Emerging Contaminants, 2(3):135–144, 2016.
[8] Hanieh Montaseri and Patricia BC Forbes. Analytical techniques for the determination of acetaminophen: A review. TrAC Trends in Analytical Chemistry, 108:122–134, 2018.
[9] Garry G Graham, Michael J Davies, Richard O Day, Anthoulla Mohamudally, and Kieran F Scott. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology, 21:201–232, 2013.
[10] Christina Abdel Shaheed, Giovanni E Ferreira, Alissa Dmitritchenko, Andrew J McLachlan, Richard O Day, Bruno Saragiotto, Christine Lin, Vicki Langendyk, Fiona Stanaway, Jane Latimer, et al. The efficacy and safety of paracetamol for pain relief: an overview of systematic reviews. Medical Journal of Australia, 214(7):324–331, 2021.
[11] Angela Yu-Chen Lin and Yu-Ting Tsai. Occurrence of pharmaceuticals in taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 407(12):3793–3802, 2009.
[12] Patrick A Baron, David C Love, and Keeve E Nachman. Pharmaceuticals and personal care products in chicken meat and other food animal products: a market-basket pilot study. Science of the total environment, 490:296–300, 2014.
[13] Erik S Fisher and Steven C Curry. Evaluation and treatment of acetaminophen toxicity. Advances in pharmacology, 85:263–272, 2019.
[14] KD Altria, MA Kelly, and BJ Clark. Current applications in the analysis of pharmaceuticals by capillary electrophoresis. ii. TrAC Trends in Analytical Chemistry, 17(4):214–226, 1998.
[15] Leena Suntornsuk. Recent advances of capillary electrophoresis in pharmaceutical analysis. Analytical and Bioanalytical Chemistry, 398:29–52, 2010.
[16] Lukáš Čapka, Petr Lacina, and Milada Vávrová. Development and application of spe/cze method for detection and determination of selected non-steroidal anti-inflammatory drugs in wastewater. Fresenius Environ. Bull, 21:3312–3317, 2012.
[17] Alia Méndez-Albores, Cristina Tarín, Georgette Rebollar-Pérez, Lenin Dominguez-Ramirez, and Eduardo Torres. Biocatalytic spectrophotometric method to detect paracetamol in water samples. Journal of Environmental Science and Health, Part A, 50(10):1046–1056, 2015.
[18] Fazel Shamsa, Hamidreza Monsef, Rouhollah Ghamooshi, and Mohammadreza Verdian-Rizi. Spectrophotometric determination of total alkaloids in some iranian medicinal plants. The Thai Journal of Pharmaceutical Sciences, 32(1):17–20, 2008.
[19] C Engin, SELAHATTİN Yilmaz, G Saglikoglu, S Yagmur, and M Sadikoglu. Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry. International Journal of Electrochemical Science, 10(2):1916–1925, 2015.
[20] Samira Sharifian and Alireza Nezamzadeh-Ejhieh. Modification of carbon paste electrode with fe (iii)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Materials Science and Engineering: C, 58:510–520, 2016.
[21] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. science, 306(5696):666–669, 2004.
[22] Kirill I Bolotin, KJ Sikes, Zhifang Jiang, M Klima, G Fudenberg, James Hone, Phaly Kim, and Horst L Stormer. Ultrahigh electron mobility in suspended graphene. Solid state communications, 146(9-10):351–355, 2008.
[23] Cristina Gómez-Navarro, Marko Burghard, and Klaus Kern. Elastic properties of chemically derived single graphene sheets. Nano letters, 8(7):2045–2049, 2008.
[24] Rahul Raveendran Nair, Peter Blake, Alexander N Grigorenko, Konstantin S Novoselov, Tim J Booth, Tobias Stauber, Nuno MR Peres, and Andre K Geim. Fine structure constant defines visual transparency of graphene. science, 320(5881):1308–1308, 2008.
[25] Alexander A Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau. Superior thermal conductivity of single-layer graphene. Nano letters, 8(3):902–907, 2008.
[26] Weiwei Cai, Arden L Moore, Yanwu Zhu, Xuesong Li, Shanshan Chen, Li Shi, and Rodney S Ruoff. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano letters, 10(5):1645–1651, 2010.
[27] Jae Hun Seol, Insun Jo, Arden L Moore, Lucas Lindsay, Zachary H Aitken, Michael T Pettes, Xuesong Li, Zhen Yao, Rui Huang, David Broido, et al. Two-dimensional phonon transport in supported graphene. Science, 328(5975):213–216, 2010.
[28] Satender Kataria, Stefan Wagner, Jasper Ruhkopf, Aamit Gahoi, Himadri Pandey, Rainer Bornemann, Sam Vaziri, Anderson D Smith, M Ostling, and Max C Lemme. Chemical vapor deposited graphene: From synthesis to applications. physica status solidi (a), 211(11):2439–2449, 2014.
[29] Vipul Agarwal and Per B Zetterlund. Strategies for reduction of graphene oxide–a comprehensive review. Chemical Engineering Journal, 405:127018, 2021.
[30] Ya Wen, Huimin Liu, and Xunyong Jiang. Preparation of graphene by exfoliation and its application in lithium-ion batteries. Journal of Alloys and Compounds, 961:170885, 2023.
[31] Pei Yu, Sean E Lowe, George P Simon, and Yu Lin Zhong. Electrochemical exfoliation of graphite and production of functional graphene. Current opinion in colloid & interface science, 20(5-6):329–338, 2015.
[32] Ying Wei and Zhenyu Sun. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current opinion in colloid & interface science, 20(5-6):311–321, 2015.
[33] Libei Huang, Jianjun Su, Yun Song, and Ruquan Ye. Laser-induced graphene: En route to smart sensing. Nano-micro letters, 12:1–17, 2020.
[34] Xinhuang Kang, Jun Wang, Hong Wu, Jun Liu, Ilhan A Aksay, and Yuehe Lin. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta, 81(3):754–759, 2010.
[35] Mingqi Li and Linhai Jing. Electrochemical behavior of acetaminophen and its detection on the pani–mwcnts composite modified electrode. Electrochimica Acta, 52(9):3250–3257, 2007.
[36] Srikanth Cheemalapati, Selvakumar Palanisamy, Veerappan Mani, and Shen-Ming Chen. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta, 117:297–304, 2013.
[37] Sathishkumar Chinnapaiyan, Nazar Riswana Barveen, Shih-Chiang Weng, Yu-Wei Cheng, and Chi-Hsien Huang. Flexible laser-induced graphene electrode with au-nps for smartphone-integrated dual detection of dopamine and acetaminophen. Journal of the Taiwan Institute of Chemical Engineers, 106189, 2025.
[38] Ilio Miccoli, Frederik Edler, Herbert Pfnür, and Christoph Tegenkamp. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22):223201, 2015.
[39] Andor Technology Ltd. Kymera 328i Spectrograph. https://andor.oxinst.com/products/kymera-and-shamrock-spectrographs/kymera-328i, 2025. Accessed: 2025-05-06.
[40] Hannes C Schniepp, Je-Luen Li, Michael J McAllister, Hiroaki Sai, Margarita Herrera-Alonso, Douglas H Adamson, Robert K Prud’homme, Roberto Car, Dudley A Saville, and Ilhan A Aksay. Functionalized single graphene sheets derived from splitting graphite oxide. The journal of physical chemistry B, 110(17):8535–8539, 2006.
[41] ULVAC-PHI Inc. Quantes: High performance XPS instrument. https://www.ulvac-phi.com/en/products/xps/quantes/. Accessed: 2025-05-03.
[42] 國立臺灣科技大學貴重儀器中心. X 光繞射儀(XRD). https://sppic.ntust.edu.tw/p/404-1058-81296.php?Lang=zh-tw, 2025. Accessed: 2025-06-13.
[43] Ruquan Ye, Dustin K James, and James M Tour. Laser-induced graphene. Accounts of chemical research, 51(7):1609–1620, 2018.
[44] Jian Lin, Zhiwei Peng, Yuanyue Liu, Francisco Ruiz-Zepeda, Ruquan Ye, Errol LG Samuel, Miguel Jose Yacaman, Boris I Yakobson, and James M Tour. Laser-induced porous graphene films from commercial polymers. Nature communications, 5(1):5714, 2014.
[45] Truong-Son Dinh Le, Hoang-Phuong Phan, Soongeun Kwon, Sangbaek Park, Yeongju Jung, Jinki Min, Byung Jae Chun, Hana Yoon, Seung Hwan Ko, Seung-Woo Kim, et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Advanced Functional Materials, 32(48):2205158, 2022.
[46] Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen. Raman spectroscopy and imaging of graphene. Nano Research, 1:273–291, 2008.
[47] Andrea C Ferrari, Jannik C Meyer, Vittorio Scardaci, Cinzia Casiraghi, Michele Lazzeri, Francesco Mauri, Stefano Piscanec, Dingde Jiang, Konstantin Sergeevich Novoselov, Siegmar Roth, et al. Raman spectrum of graphene and graphene layers. Physical review letters, 97(18):187401, 2006.
[48] Pin-Syuan He, Dinh-Phuc Tran, Ting-Yu Kuo, Wei-You Hsu, Huai-En Lin, Kai-Cheng Shie, and Chih Chen. High-bonding-strength polyimide films achieved via thermal management and surface activation. Nanomaterials, 13(9):1575, 2023.
[49] Sasha Stankovich, Dmitriy A Dikin, Richard D Piner, Kevin A Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T Nguyen, and Rodney S Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7):1558–1565, 2007.
[50] R Al-Gaashani, A Najjar, Y Zakaria, S Mansour, and MA Atieh. Xps and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11):14439–14448, 2019.
[51] Andreea Cernat, Mihaela Tertiş, Robert Săndulescu, Fethi Bedioui, Alexandru Cristea, and Cecilia Cristea. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886:16–28, 2015.
[52] Ming Wei, Yikai Yuan, Dong-Sheng Chen, Wenting Tong, Wenbo Lu, and Lin Pan. A systematic review on electrochemical sensors for the detection of acetaminophen. Analytical Methods, 2024.
[53] Majid Arvand and Tahereh M Gholizadeh. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids and Surfaces B: Biointerfaces, 103:84–93, 2013.
[54] AT Ezhil Vilian, Muniyandi Rajkumar, and Shen-Ming Chen. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids and Surfaces B: Biointerfaces, 115:295–301, 2014.
[55] Yang Fan, Jin-Hang Liu, Hai-Ting Lu, and Qin Zhang. Electrochemical behavior and voltammetric determination of paracetamol on nafion/tio2–graphene modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 85(2):289–292, 2011.
[56] Chun-Xuan Xu, Ke-Jing Huang, Yang Fan, Zhi-Wei Wu, and Jing Li. Electrochemical determination of acetaminophen based on tio2–graphene/poly (methyl red) composite film modified electrode. Journal of Molecular Liquids, 165:32–37, 2012.
[57] Gui-Ting Liu, Hui-Fen Chen, Guo-Ming Lin, Ping-ping Ye, Xiao-Ping Wang, Ying-Zhi Jiao, Xiao-Yu Guo, Ying Wen, and Hai-Feng Yang. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosensors and Bioelectronics, 56:26–32, 2014.
[58] Abbas Afkhami, Hosein Khoshsafar, Hasan Bagheri, and Tayyebeh Madrakian. Preparation of nife2o4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Analytica chimica acta, 831:50–59, 2014.
[59] Daban Lu, Yan Zhang, Letao Wang, Shaoxiong Lin, Chunming Wang, and Xiaofeng Chen. Sensitive detection of acetaminophen based on fe3o4 nanoparticles-coated poly (diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. Talanta, 88:181–186, 2012.
[60] Meixia Zheng, Feng Gao, Qingxiang Wang, Xili Cai, Shulian Jiang, Lizhang Huang, and Fei Gao. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite. Materials Science and Engineering: C, 33(3):1514–1520, 2013.
[61] Yang Fan, Jin-Hang Liu, Chun-Peng Yang, Meng Yu, and Peng Liu. Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sensors and Actuators B: Chemical, 157(2):669–674, 2011.
[62] Weimeng Si, Wu Lei, Zhen Han, Yuehua Zhang, Qingli Hao, and Mingzhu Xia. Electrochemical sensing of acetaminophen based on poly (3, 4-ethylenedioxythiophene)/graphene oxide composites. Sensors and Actuators B: Chemical, 193:823–829, 2014.
[63] Wencai Zhu, Hui Huang, Xiaochun Gao, and Houyi Ma. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly (4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films. Materials Science and Engineering: C, 45:21–28, 2014.
[64] Mihaela Tertiş, Oana Hosu, Luminiţa Fritea, Cosmin Farcau, Andreea Cernat, Robert Săndulescu, and Cecilia Cristea. A novel label-free immunosensor based on activated graphene oxide for acetaminophen detection. Electroanalysis, 27(3):638–647, 2015.
[65] Andreea Cernat, Mihaela Tertiș, Claudia Nicoleta Păpară, Ede Bodoki, and Robert Săndulescu. Nanostructured platform based on graphene-polypyrrole composite for immunosensor fabrication. International Journal of Electrochemical Science, 10(6):4718–4731, 2015.
[66] Irena Baranowska, Piotr Markowski, Anna Gerle, and Jacek Baranowski. Determination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry, 73(1):5–10, 2008.
[67] Carolina Martínez-Sánchez, Facundo Montiel-González, and Vicente Rodríguez-González. Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-y2o3 nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 96:382–389, 2019.
[68] G Ibáñez-Redín, D Wilson, Débora Gonçalves, and ON Oliveira Jr. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. Journal of colloid and interface science, 515:101–108, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98783-
dc.description.abstract近年來,乙醯氨基酚(Acetaminophen, APAP)在臨床診斷之研究日益增多。本研究旨在開發一種快速、靈敏且具成本效益的電化學感測元件,目標為偵測液體中之APAP。本感測器以CO₂雷射誘導聚醯亞胺(Polyimide, PI)薄膜生成石墨烯(Laser-induced graphene, LIG),再修飾於玻璃碳電極(Glassy carbon electrode, GCE)表面,形成 LIG/GCE 感測面。材料特性透過四點探針(Four-point probe)、場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FESEM)、拉曼光譜儀(Raman spectrometer)、X 光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)與X射線繞射(X-ray diffractometer, XRD)進行驗證,以評估其微觀結構、化學組成與結晶性。在電化學性能分析方面,本研究採用循環伏安法(Cyclic voltammetry, CV)與方波伏安法(Square wave voltammetry, SWV)進行測試。結果顯示,LIG/GCE 靈敏度(Sensitivity)為0.157 µA·µM⁻¹·cm⁻²、檢測極限(Limit of detection, LOD)為3.95 µM,寬廣的線性範圍(Linear range)5–120 µM,並展現出優異的抗干擾能力與選擇性。本研究展示 LIG 技術在感測APAP領域的潛力,具備快速製備與低成本等優勢,可望應用於人類尿液中對APAP的偵測。zh_TW
dc.description.abstractIn recent years, acetaminophen (APAP) has attracted growing attention in clinical diagnostics monitoring. This study aims to develop a rapid, sensitive, and cost-effective electrochemical sensor for APAP detection in aqueous media. The sensor uses laser-induced graphene (LIG), fabricated by CO₂ laser irradiation of a polyimide (PI) film, to modify a glassy carbon electrode (GCE), forming a LIG/GCE sensing platform. The structural and chemical properties of LIG were characterized via Four-point probe, FESEM, Raman spectroscopy, XPS, and XRD. Electrochemical performance was evaluated using cyclic voltammetry and square wave voltammetry. Results show the LIG/GCE electrode exhibits a sensitivity of 0.157 µA·µM⁻¹·cm⁻²,a limit of detection (LOD) of 3.95 µM, and a broad linear range of 5–120 µM. The sensor demonstrates excellent selectivity and anti-interference capability, making it suitable for complex matrices. This study demonstrates the potential of LIG technology for APAP sensing, offering advantages such as rapid fabrication and low cost, and shows promise for application in detecting APAP in human urine.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:11:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:11:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 viii
表次 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 2
第二章 文獻回顧 4
2.1 乙醯氨基酚 4
2.1.1 乙醯氨基酚藥理作用與潛在危害 4
2.1.2 乙醯氨基酚檢測方法 5
2.1.2.1 氣相色譜-質譜法 5
2.1.2.2 電泳法 5
2.1.2.3 分光光度法 6
2.1.2.4 電化學法 6
2.2 石墨烯 7
2.2.1 石墨烯的製備方法 8
2.2.1.1 化學氣相沉積法 8
2.2.1.2 氧化還原法 9
2.2.1.3 機械剝離法 9
2.2.1.4 電化學剝離法 10
2.2.1.5 化學剝離法 10
2.2.1.6 雷射誘發石墨烯 10
2.3 電化學方法之乙醯氨基酚感測件 11
2.4 小結 12
第三章 研究方法 14
3.1 實驗材料與藥品 14
3.2 實驗設備 15
3.2.1 雷射系統 15
3.2.2 電化學分析系統 16
3.2.3 去離子水系統 19
3.2.4 超音波震盪機 20
3.2.5 精密天秤 20
3.3 實驗流程 21
3.4 實驗分析儀器 23
3.4.1 四點探針 23
3.4.2 場發射掃描式電子顯微鏡 25
3.4.3 拉曼光譜儀 27
3.4.4 X 光光電子能譜儀 28
3.4.5 X 射線繞射儀 30
3.5 雷射誘發石墨烯修飾玻璃碳電極製備 32
3.6 電化學感測方法 33
3.6.1 循環伏安法 33
3.6.2 方波伏安法 34
3.6.3 乙醯氨基酚感測實驗 35
3.6.4 干擾物測試 37
第四章 結果與討論 38
4.1 雷射誘發石墨烯之結果分析 38
4.1.1 雷射誘發石墨烯之外觀 38
4.1.2 雷射誘發石墨烯之四點探針片電阻率分析 38
4.1.3 雷射誘發石墨烯之 FESEM 表面形貌分析 39
4.1.4 雷射誘發石墨烯之拉曼光譜分析 44
4.1.5 雷射誘發石墨烯之 XPS 化學性質分析 46
4.1.6 雷射誘發石墨烯之 XRD 分析 50
4.1.7 最佳雷射能量密度之綜合評估與選擇 51
4.2 電化學之乙醯氨基酚感測結果與分析 52
4.2.1 LIG 修飾於 GCE 之循環伏安量測 52
4.2.2 LIG 修飾於 GCE 之方波伏安量測 55
4.2.3 干擾物測試 59
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 60
參考文獻 63
附錄 A — Abbreviation 74
A.1 Abbreviation 74
-
dc.language.isozh_TW-
dc.subjectPI 薄膜zh_TW
dc.subject乙醯氨基酚zh_TW
dc.subject石墨烯zh_TW
dc.subjectCO₂雷射zh_TW
dc.subjectgrapheneen
dc.subjectAcetaminophenen
dc.subjectCO₂ laseren
dc.subjectPI filmen
dc.title雷射誘導石墨烯修飾玻璃碳電極於乙醯氨基酚檢測之研究zh_TW
dc.titleDetection of Acetaminophen Using a Glassy Carbon Electrode Modified with Laser-induced Grapheneen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳林祈;廖英志;陳盈君;李旻軒zh_TW
dc.contributor.oralexamcommitteeLin-Chi Chen;Ying-Chih Liao;Ying-Chun Chen;Min-Hsuan Leeen
dc.subject.keywordPI 薄膜,CO₂雷射,石墨烯,乙醯氨基酚,zh_TW
dc.subject.keywordPI film,CO₂ laser,graphene,Acetaminophen,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202504072-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
47.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved