請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾惠芸 | zh_TW |
| dc.contributor.advisor | Hui-Yun Tseng | en |
| dc.contributor.author | 洪嘉謙 | zh_TW |
| dc.contributor.author | Chia-Chien Hung | en |
| dc.date.accessioned | 2025-08-19T16:09:08Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J., & Aide, T. M. (2009). Automated classification of bird and amphibian calls using machine learning: A comparison of methods. Ecological Informatics, 4(4), 206–214.
Alcocer, I., Lima, H., Sugai, L. S. M., & Llusia, D. (2022). Acoustic indices as proxies for biodiversity: a meta‐analysis. Biological Reviews, 97(6), 2209-2236. Alexander, R. D., & Moore, T. E. (1958). Studies on the acoustical behavior of seventeen-year cicadas (Homoptera: Cicadidae: Magicicada). Ohio Journal of Science, 58(3), 107–127. Alignan, J.-F., Debras, J.-F., & Dutoit, T. (2018). Orthoptera prove good indicators of grassland rehabilitation success in the first French Natural Asset Reserve. Journal for Nature Conservation, 44, 1–11. Allen-Ankins, S., McKnight, D. T., Nordberg, E. J., Hoefer, S., Roe, P., Watson, D. M., McDonald, P. G., Fuller, R. A., & Schwarzkopf, L. (2023). Effectiveness of acoustic indices as indicators of vertebrate biodiversity. Ecological Indicators, 147, 109937. Bai, Z., & Zhang, S. (2024). Effects of different natural soundscapes on human psychophysiology in national forest park. Scientific Reports, 14(1), 17462. Biella, P., Borghesan, S., Colombo, B., Galimberti, A., Guzzetti, L., Maggioni, D., Pioltelli, E., Ramazzotti, F., Ranalli, R., & Tommasi, N. (2025). Lawn management promoting tall herbs, flowering species and urban park attributes enhance insect biodiversity in urban green areas. Urban Forestry & Urban Greening, 104, 128650. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., Krakauer, A. H., Clark, C., & Cortopassi, K. A. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. Journal of Applied Ecology, 48(3), 758–767. Boelman, N. T., Asner, G. P., Hart, P. J., & Martin, R. E. (2007). Multi‐trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17(8), 2137–2144. Borker, A. L., Buxton, R. T., Jones, I. L., Major, H. L., Williams, J. C., Tershy, B. R., & Croll, D. A. (2020). Do soundscape indices predict landscape‐scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restoration Ecology, 28(1), 252–260. Bradfer-Lawrence, T., Bunnefeld, N., Gardner, N., Willis, S. G., & Dent, D. H. (2020). Rapid assessment of avian species richness and abundance using acoustic indices. Ecological Indicators, 115, 106400. Bradfer‐Lawrence, T., Gardner, N., Bunnefeld, L., Bunnefeld, N., Willis, S. G., & Dent, D. H. (2019). Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10(10), 1796–1807. Buri, P., Arlettaz, R., & Humbert, J.-Y. (2013). Delaying mowing and leaving uncut refuges boosts orthopterans in extensively managed meadows: evidence drawn from field-scale experimentation. Agriculture, Ecosystems & Environment, 181, 22-30. Buxton, R. T., & Jones, I. L. (2012). Measuring nocturnal seabird activity and status using acoustic recording devices: applications for island restoration. Journal of Field Ornithology, 83(1), 47-60. Buxton, R. T., McKenna, M. F., Clapp, M., Meyer, E., Stabenau, E., Angeloni, L. M., Crooks, K., & Wittemyer, G. (2018). Efficacy of extracting indices from large‐scale acoustic recordings to monitor biodiversity. Conservation Biology, 32(5), 1174-1184. Campera, M., Budiadi, B., Bušina, T., Fathoni, B. H., Dermody, J., Nijman, V., Imron, M. A., & Nekaris, K. (2022). Abundance and richness of invertebrates in shade-grown versus sun-exposed coffee home gardens in Indonesia. Agroforestry Systems, 96(5), 829–841. Choate, B. A., Hickman, P. L., & Moretti, E. A. (2018). Wild bee species abundance and richness across an urban–rural gradient. Journal of Insect Conservation, 22, 391–403. Ciceran, M., Murray, A.-M., & Rowell, G. (1994). Natural variation in the temporal patterning of calling song structure in the field cricket Gryllus pennsylvanicus: effects of temperature, age, mass, time of day, and nearest neighbour. Canadian Journal of Zoology, 72(1), 38–42. Curbelo Cruz, M., del Castillo Domínguez, S. L., Galano Machado, L., Herrera Rodeiro, A., Mancina, C. A., & Alonso Bosch, R. (2025). A soundscape approach for a short-term acoustic monitoring of a critically endangered Cuban frog. Biodiversity and Conservation, 1–21. Darras, K., Batáry, P., Furnas, B., Celis‐Murillo, A., Van Wilgenburg, S. L., Mulyani, Y. A., & Tscharntke, T. (2018). Comparing the sampling performance of sound recorders versus point counts in bird surveys: A meta‐analysis. Journal of Applied Ecology, 55(6), 2575–2586. Dawson, D. K., & Efford, M. G. (2009). Bird population density estimated from acoustic signals. Journal of Applied Ecology, 46(6), 1201-1209. de Araújo, W. S., dos Santos Costa, K. C., Freitas, É. V. D., Santos, J. C., & Cuevas-Reyes, P. (2024). Species richness and network topology patterns in Neotropical plant-galling communities changes along an urbanization gradient. Journal of Insect Conservation, 28(1), 191–200. Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., & Sueur, J. (2012). Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13(1), 46-54. de Souza Amorim, D., Brown, B. V., Boscolo, D., Ale-Rocha, R., Alvarez-Garcia, D. M., Balbi, M. I. P., de Marco Barbosa, A., Capellari, R. S., de Carvalho, C. J. B., & Couri, M. S. (2022). Vertical stratification of insect abundance and species richness in an Amazonian tropical forest. Scientific reports, 12(1), 1734. Duarte, M., Sousa-Lima, R., Young, R., Vasconcelos, M., Bittencourt, E., Scarpelli, M., Farina, A., & Pieretti, N. (2021). Changes on soundscapes reveal impacts of wildfires in the fauna of a Brazilian savanna. Science of the Total Environment, 769, 144988. Duarte, M. H., Caliari, E. P., Scarpelli, M. D., Lobregat, G. O., Young, R. J., & Sousa-Lima, R. S. (2019). Effects of mining truck traffic on cricket calling activity. The Journal of the Acoustical Society of America, 146(1), 656–664. Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y., & Peck, M. (2018). Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecological Indicators, 95, 939–952. Essl, F., & Dirnböck, T. (2012). What determines Orthoptera species distribution and richness in temperate semi-natural dry grassland remnants? Biodiversity and Conservation, 21, 2525–2537. Fairbrass, A. J., Rennert, P., Williams, C., Titheridge, H., & Jones, K. E. (2017). Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 83, 169–177. Fang, W., Lin, X., Lin, Y., Huang, S., Huang, J., Fan, S., Ran, C., Dang, E., Lin, Y., & Fu, W. (2023). The impact of urbanization on taxonomic diversity and functional similarity among butterfly communities in waterfront green spaces. Insects, 14(11), 851. Fartmann, T., Krämer, B., Stelzner, F., & Poniatowski, D. (2012). Orthoptera as ecological indicators for succession in steppe grassland. Ecological Indicators, 20, 337–344. Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207–215. García-García, P. L., Fontana, P., Marini, L., Equihua-Martínez, A., Sánchez-Escudero, J., Valdez-Carrasco, J., & Cano-Santana, Z. (2008). Habitat association of Orthoptera in El Cimatario National Park, Querétaro, México. Journal of Orthoptera Research, 17(1), 83–87. Gasc, A., Gottesman, B. L., Francomano, D., Jung, J., Durham, M., Mateljak, J., & Pijanowski, B. C. (2018). Soundscapes reveal disturbance impacts: biophonic response to wildfire in the Sonoran Desert Sky Islands. Landscape Ecology, 33, 1399–1415. Gilman, C. A., Toolson, E. C., & Wolf, B. O. (2008). Effects of temperature on behavior of Trimerotropis pallidipennis (Orthoptera, Acrididae). The Southwestern Naturalist, 53(2), 162–168. Gomes, L., Sole, M., Sousa-Lima, R. S., & Baumgarten, J. E. (2022). Influence of anthropogenic sounds on insect, anuran and bird acoustic signals: A meta-analysis. Frontiers in Ecology and Evolution, 10, 827440. Greenhalgh, J. A., Stone, H. J., Fisher, T., & Sayer, C. D. (2021). Ecoacoustics as a novel tool for assessing pond restoration success: Results of a pilot study. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8), 2017–2028. Haselmayer, J., & Quinn, J. S. (2000). A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru. The Condor, 102(4), 887–893. He, Z. Q. (2020). A photographic guide to katydids and crickets of China. Chongqing University Press. He, Z., & Takeda, M. (2013). Discrete modes of life cycle in Velarifictorus micado Species Complex (Orthoptera: Gryllidae). International Scholarly Research Notices, 2013(1), 851581. Helbing, F., Blaeser, T. P., Löffler, F., & Fartmann, T. (2014). Response of Orthoptera communities to succession in alluvial pine woodlands. Journal of Insect Conservation, 18, 215–224. Heller, K.-G., Baker, E., Ingrisch, S., Korsunovskaya, O., Liu, C.-X., Riede, K., & Warchałowska-Šliwa, E. (2021). Bioacoustics and systematics of Mecopoda (and related forms) from South East Asia and adjacent areas (Orthoptera, Tettigonioidea, Mecopodinae) including some chromosome data. Zootaxa, 5005(2), 101–144. Hsieh, T., Ma, K., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. Humbert, J.-Y., Ghazoul, J., Richner, N., & Walter, T. (2012). Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biological Conservation, 152, 96–101. Ingrisch, S., & Rentz, D. (2009). Orthoptera: grasshoppers, locusts, katydids, crickets. In Encyclopedia of insects (pp. 732–743). Elsevier. Inkotte, J., Bomfim, B., da Silva, S. C., Valadão, M. B. X., da Rosa, M. G., Viana, R. B., Gatto, A., & Pereira, R. S. (2023). Litter removal impacts on soil biodiversity and eucalypt plantation development in the seasonal tropics. Journal of Forestry Research, 34(3), 735–748. Jerrentrup, J. S., Wrage‐Mönnig, N., Röver, K. U., & Isselstein, J. (2014). Grazing intensity affects insect diversity via sward structure and heterogeneity in a long‐term experiment. Journal of Applied Ecology, 51(4), 968–977. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021). BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236. Kasten, E. P., Gage, S. H., Fox, J., & Joo, W. (2012). The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology. Ecological informatics, 12, 50–67. Kenyeres, Z., Szabo, S., Takacs, G., & Szinetar, C. (2020). Orthoptera assemblages as indicators for the restoration of sand grassland networks. North-Western Journal Of Zoology, 16(1). Knuff, A. K., Staab, M., Frey, J., Dormann, C. F., Asbeck, T., & Klein, A.-M. (2020). Insect abundance in managed forests benefits from multi-layered vegetation. Basic and Applied Ecology, 48, 124–135. Kong, J., Ritchie, M., Vadboncoeur, É., MacMillan, H., & Bertram, S. (2024). Growth, Development, and Life History of a Mass-Reared Edible Insect, Gryllodes sigillatus (Orthoptera: Gryllidae).” bioRxiv: 2024.10. 08.617250. Löffler, F., & Fartmann, T. (2017). Effects of landscape and habitat quality on Orthoptera assemblages of pre-alpine calcareous grasslands. Agriculture, Ecosystems & Environment, 248, 71–81. Lehmann, G. U., Frommolt, K.-H., Lehmann, A. W., & Riede, K. (2014). Baseline data for automated acoustic monitoring of Orthoptera in a Mediterranean landscape, the Hymettos, Greece. Journal of Insect Conservation, 18, 909–925. Liao, W., Venn, S., & Niemelä, J. (2020). Environmental determinants of diving beetle assemblages (Coleoptera: Dytiscidae) in an urban landscape. Biodiversity and Conservation, 29(7), 2343–2359. Ligges, U., Krey, S., Mersmann, O., & Schnackenberg, S. (2013). tuneR: Analysis of music. https://CRAN.R-project.org/package=tuneR Lin, S.-H. (2024). The effects of anthropogenic noise on the acoustic behavior of Ornebius infuscatus (Orthoptera: Mogoplistidae) [Master’s thesis, National Taiwan University]. Liu, C.-X., Heller, K.-G., Wang, X.-S., Yang, Z., Wu, C., Liu, F., & Zhang, T. (2020). Taxonomy of a katydid genus Mecopoda Serville (Orthoptera: Tettigoniidae, Mecopodinae) from East Asia. Zootaxa, 4758(2), 296–310. Marini, L., Fontana, P., Scotton, M., & Klimek, S. (2008). Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. Journal of Applied Ecology, 45(1), 361–370. Moreno-Gómez, F. N., Bartheld, J., Silva-Escobar, A. A., Briones, R., Márquez, R., & Penna, M. (2019). Evaluating acoustic indices in the Valdivian rainforest, a biodiversity hotspot in South America. Ecological Indicators, 103, 1–8. Morrison, C. A., Auniņš, A., Benkő, Z., Brotons, L., Chodkiewicz, T., Chylarecki, P., Escandell, V., Eskildsen, D., Gamero, A., & Herrando, S. (2021). Bird population declines and species turnover are changing the acoustic properties of spring soundscapes. Nature Communications, 12(1), 6217. Norton, B. A., Bending, G. D., Clark, R., Corstanje, R., Dunnett, N., Evans, K. L., Grafius, D. R., Gravestock, E., Grice, S. M., & Harris, J. A. (2019). Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity. Ecological Applications, 29(6), e01946. Norton, B. A., Thomson, L. J., Williams, N. S., & McDonnell, M. J. (2014). The effect of urban ground covers on arthropods: An experiment. Urban Ecosystems, 17, 77-99. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community ecology package, 2(9), 1–295. Orci, K. M., Petróczki, K., & Barta, Z. (2016). Instantaneous song modification in response to fluctuating traffic noise in the tree cricket Oecanthus pellucens. Animal Behaviour, 112, 187–194. Otte, D., & Cade, W. (1984). African crickets (Gryllidae). 5. East and South African species of Modicogryllus and several related genera (Gryllinae, Modicogryllini). Proceedings of the Academy of Natural Sciences of Philadelphia, 67–97. Panhwar, W. A., Riffat, S., Wagan, M. S., & Santosh, K. (2013). On the distribution and taxonomy of Conocephalus species (Orthoptera: Tettigonioidea: Conocephalinae) from Pakistan. Journal of Biodiversity and Environmental Sciences, 3(11), 171–176. Paradise, C., Madden, M., & Hedley, L. (2015). Assessment of beetle and bug diversity in extensively managed cattle farms of varying cattle density, sward height, and surrounding land use. Agroecology and Sustainable Food Systems, 39(1), 19–40. Pernat, N., Buchholz, S., & Schirmel, J. (2024). Urbanization reduces Orthoptera diversity and changes community structure towards mobile species. Insect Conservation and Diversity, 17(2), 259–272. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators, 11(3), 868–873. Pieretti, N., Martire, M. L., Farina, A., & Danovaro, R. (2017). Marine soundscape as an additional biodiversity monitoring tool: a case study from the Adriatic Sea (Mediterranean Sea). Ecological Indicators, 83, 13–20. Pires, A., & Hoy, R. R. (1992). Temperature coupling in cricket acoustic communication: I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. Journal of Comparative Physiology A, 171, 69–78. Priyadarshana, T. S., Martin, E. A., Sirami, C., Woodcock, B. A., Goodale, E., Martínez‐Núñez, C., Lee, M. B., Pagani‐Núñez, E., Raderschall, C. A., & Brotons, L. (2024). Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: A global review and meta‐analysis. Ecology Letters, 27(3), e14412. R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ Rajan, S. C., Athira, K., Jaishanker, R., Sooraj, N., & Sarojkumar, V. (2019). Rapid assessment of biodiversity using acoustic indices. Biodiversity and Conservation, 28, 2371–2383. Rappa, N. J., Staab, M., Ruppert, L. S., Frey, J., Mello, M. A., & Klein, A. M. (2024). Forest structure and heterogeneity increase diversity and alter composition of host–parasitoid networks. Ecological Entomology, 49(2), 257–271. Riede, K. (2018). Acoustic profiling of Orthoptera. Journal of Orthoptera Research, 27(2), 203–215. Robinson, D. J., & Hall, M. J. (2002). Sound signalling in Orthoptera. Advances in Insect Physiology, 29, 151–278.. Ross, S. R.-J., Friedman, N. R., Yoshimura, M., Yoshida, T., Donohue, I., & Economo, E. P. (2021). Utility of acoustic indices for ecological monitoring in complex sonic environments. Ecological Indicators, 121, 107114. Santos, E. G., Wiederhecker, H. C., Pompermaier, V. T., Schirmer, S. C., Gainsbury, A. M., & Marini, M. Â. (2024). Are acoustic indices useful for monitoring urban biodiversity? Urban Ecosystems, 27(5), 1975–1981. Sathyan, R., & Couldridge, V. (2021). The effect of anthropogenic noise and weather conditions on male calls in the bladder grasshopper Bullacris unicolor. Bioacoustics, 30(1), 110–123. Schmidt, A. K., Römer, H., & Riede, K. (2013). Spectral niche segregation and community organization in a tropical cricket assemblage. Behavioral Ecology, 24(2), 470–480. Singh, R., & Jain, M. (2021). Variation in call types, calling activity patterns and relationship between call frequency and body size in a field cricket, Acanthogryllus asiaticus. Bioacoustics, 30(3), 284–302. Song, H. (2018). Biodiversity of Orthoptera. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity: Science and society (Vol. 2, pp. 245–279). Wiley Blackwell. Spalinger, L. C., Haynes, A. G., Schütz, M., & Risch, A. C. (2012). Impact of wild ungulate grazing on Orthoptera abundance and diversity in subalpine grasslands. Insect Conservation and Diversity, 5(6), 444–452. Sueur, J., Aubin, T., & Simonis, C. (2008a). Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213–226. Sueur, J., Pavoine, S., Hamerlynck, O., & Duvail, S. (2008b). Rapid acoustic survey for biodiversity appraisal. PLOS ONE, 3(12), e4065. Sutcliffe, L. M., Batáry, P., Becker, T., Orci, K. M., & Leuschner, C. (2015). Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodiversity and Conservation, 24, 229–245. Tan, M. K. (2021). Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore. Bioacoustics, 30(4), 469–486. Tan, M. K., Ingrisch, S., Wahab, R. B. H. A., Japir, R., & Chung, A. Y. (2020). Ultrasonic bioacoustics and stridulum morphology reveal cryptic species among Lipotactes big-eyed katydids (Orthoptera: Tettigoniidae: Lipotactinae) from Borneo. Systematics and Biodiversity, 18(5), 510–524. Tan, M. K., & Robillard, T. (2022). Highly diversified circadian rhythms in the calling activity of eneopterine crickets (Orthoptera: Grylloidea: Gryllidae) from Southeast Asia. Bioacoustics, 31(4), 470–489. Tan, M. K., Robillard, T., & Ter Hofstede, H. (2023). The circadian calling activity of a lebinthine cricket with high-frequency calls is unaffected by cicada choruses in the day. PeerJ, 11, e14641. Tokue, Y., Koga, K., Nakamura, A., Osawa, K., Seki, K., Imamura, F., & Nishihiro, J. (2022). Effects of hearing diverse orthoptera sounds on human psychology. Urban Forestry & Urban Greening, 73, 127512. Villanueva-Rivera, L. J., & Pijanowski, B. C. (2018). Soundecology: soundscape ecology. R package version 1.3.3. Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J., & Pekin, B. (2011). A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26, 1233–1246. Walcher, R., Hussain, R., Sachslehner, L., Bohner, A., Jernej, I., Zaller, J., Arnberger, A., & Frank, T. (2019). Long-term abandonment of mountain meadows affects bumblebees, true bugs and grasshoppers: a case study in the Austrian Alps. Applied Ecology & Environmental Research, 17(3). Walcher, R., Karrer, J., Sachslehner, L., Bohner, A., Pachinger, B., Brandl, D., Zaller, J. G., Arnberger, A., & Frank, T. (2017). Diversity of bumblebees, heteropteran bugs and grasshoppers maintained by both: abandonment and extensive management of mountain meadows in three regions across the Austrian and Swiss Alps. Landscape Ecology, 32, 1937–1951. Walker, S. E., & Cade, W. H. (2003). The effects of temperature and age on calling song in a field cricket with a complex calling song, Teleogryllus oceanicus (Orthoptera: Gryllidae). Canadian Journal of Zoology, 81(8), 1414–1420. Wang, B., Li, K., He, Z. Q., & Takeda, M. (2020). The genetic differentiation of a cricket (Velarifictorus micado) with two modes of life cycle in East Asia after the middle Pleistocene and the invasion origin of the United States of America. Ecology and Evolution, 10(24), 13767–13786. Wang, H., He, Q., Liu, X., Zhuang, Y., & Hong, S. (2012). Global urbanization research from 1991 to 2009: A systematic research review. Landscape and Urban Planning, 104(3–4), 299–309. Wang, Y., Huang, Q., Zhang, X., & Ren, B. (2014). Application of insect songs in monitoring population density level of Locusta migratoria migratoria (Orthoptera: Acrididae). Zoological Studies, 53(1), 55. Weiss, N., Zucchi, H., & Hochkirch, A. (2013). The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodiversity and Conservation, 22, 2167–2178. Willmott, N. J., Henneken, J., Elgar, M. A., & Jones, T. M. (2019). Guiding lights: Foraging responses of juvenile nocturnal orb‐web spiders to the presence of artificial light at night. Ethology, 125(5), 289–297. Wu, S.-H., Chang, H.-W., Lin, R.-S., & Tuanmu, M.-N. (2022). SILIC: A cross database framework for automatically extracting robust biodiversity information from soundscape recordings based on object detection and a tiny training dataset. Ecological Informatics, 68, 101534. Zuk, M., Rotenberry, J., & Simmons, L. (2001). Geographical variation in calling song of the field cricket Teleogryllus oceanicus: the importance of spatial scale. Journal of Evolutionary Biology, 14(5), 731–741. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98774 | - |
| dc.description.abstract | 生態聲學技術被認為是可靠且非侵入性的多樣性調查方法,然而過去研究主要專注於脊椎動物,許多發聲的直翅目昆蟲,例如蟋蟀與螽斯,則較少被討論。隨著都市的擴張,都市環境中昆蟲的保育與研究也漸趨受到重視。本研究探討都市綠地中直翅目昆蟲的鳴叫多樣性與族群變動,並評估六種常用聲音指標(acoustic indices)在預測鳴叫昆蟲多樣性上的適用性。此外,亦探討物種組成與棲地間的相關性。我們使用錄音機(16-bit WAV,取樣頻率達 44.1 kHz)在九個都市綠地進行監測,每月錄製三天,持續一年,並量測環境因子,分析鳴叫出現次數與多樣性。研究結果顯示,物種對棲地的偏好可由聲景資料反映,且多項環境因子與鳴叫多樣性呈正相關,推測具較高棲地異質性的地點可能支持更多樣化的直翅目昆蟲群聚。此外,比較不同月份間的聲音資料亦能呈現部分物種的族群變動趨勢。在聲音指標中,Bioacoustic Index(BI)與 Normalized Difference Soundscape Index(NDSI)與物種多樣性呈現最強正相關,而 Acoustic Complexity Index(ACI)表現最差。基於上述發現,本研究展現生態聲學方法於生物多樣性監測上的應用潛力,並強調小尺度環境因子對直翅目多樣性的影響,為都市綠地設計提供相關科學依據與建議。 | zh_TW |
| dc.description.abstract | The ecoacoustic method is a reliable and non-invasive approach for investigating biodiversity. While previous biophony research has primarily focused on vertebrate animals, many sound-producing Orthoptera insects, such as crickets and katydids, remain underexplored. As urbanization accelerates, understanding and conserving insect diversity in urban environments has become increasingly important. This study explores the diversity and population dynamics of orthopteran soundscapes in urban green spaces and evaluates the utility of six acoustic indices in estimating the richness of chirping insects. Nine grassland sites were monitored using sound recorders (16-bit WAV, frequency response up to 44.1 kHz), recording for three days each month over a one-year period. Environmental variables were also measured to assess their associations with calling insect diversity. The recordings were analyzed to determine the occurrence and diversity of calling patterns. Our results indicate clear species-specific habitat preferences, and several environmental variables were positively associated with chirping insect diversity, suggesting that sites with greater habitat heterogeneity may support more diverse communities. Furthermore, acoustic data revealed population dynamics across different months in some species. Among the acoustic indices, the Bioacoustic Index (BI) and Normalized Difference Soundscape Index (NDSI) showed the strongest correlations with species richness, while the Acoustic Complexity Index (ACI) was the least effective. Based on these findings, this study demonstrates the ecoacoustic method can be effectively applied to biodiversity monitoring and highlights the importance of local environmental factors in shaping orthopteran richness. These results also provide insights for enhancing insect conservation in the planning and development of urban green spaces. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:09:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:09:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目次Table of Contents vi 圖次 List of Figures vii 表次 List of Tables viii Introduction 1 Materials and methods 5 Sample sites and recording settings 5 Audio data analysis and species identification 6 Local scale factors: Satellite imagery and landscape analysis 7 Fine scale factors: Temperature measurement and vegetation structure 7 Acoustic indices calculation 8 Statistical analysis 9 Results 11 Chirping orthopterans assemblage 11 Sound characteristics of identified and unidentified vocal species 11 Monthly population changes and nocturnal activity patterns of dominant species 12 Associations between species distribution and environmental variables 13 Associations between species richness and environmental variables 14 Correlation between Orthoptera diversity and acoustic indices 15 Discussion 16 Habitat preference of Orthoptera species 16 Factors that affect species diversity in urban region 16 Evaluating the effectiveness of acoustic indices for insect in urban soundscapes 18 Monthly population trends and hourly nocturnal calling activity of orthopterans 20 Ecoacoustic insights into insect diversity and urban green space planning 22 Challenges and prospects of AI-based insect sound identification 23 References 47 | - |
| dc.language.iso | en | - |
| dc.subject | 生物聲學 | zh_TW |
| dc.subject | 鳴唱昆蟲 | zh_TW |
| dc.subject | 都市化 | zh_TW |
| dc.subject | 聲音多樣性 | zh_TW |
| dc.subject | 聲景生態學 | zh_TW |
| dc.subject | soundscape ecology | en |
| dc.subject | acoustic diversity | en |
| dc.subject | urbanization | en |
| dc.subject | bioacoustic | en |
| dc.subject | singing insects | en |
| dc.title | 透過生態聲學技術揭開都市綠地之直翅目昆蟲鳴叫多樣性 | zh_TW |
| dc.title | Unveiling the Orthoptera calling diversity across urban green spaces through ecoacoustics method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 端木茂甯;張俊文;廖一璋;Tan Ming Kai | zh_TW |
| dc.contributor.oralexamcommittee | Mao-Ning Tuan Mu;Chun-Wen Chang;Yi-Chang Liao;Tan Ming Kai | en |
| dc.subject.keyword | 鳴唱昆蟲,生物聲學,聲景生態學,聲音多樣性,都市化, | zh_TW |
| dc.subject.keyword | singing insects,bioacoustic,soundscape ecology,acoustic diversity,urbanization, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202503763 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
