請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 洪甫安 | zh_TW |
| dc.contributor.author | Fu-An Hung | en |
| dc.date.accessioned | 2025-08-19T16:08:41Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 1. Fanella, D.A. and A.E. Naaman. Stress-strain properties of fiber reinforced mortar in compression. in Journal Proceedings. 1985.
2. Bencardino, F., et al., Stress-strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 2008. 20(3): p. 255-263. 3. Song, P. and S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 2004. 18(9): p. 669-673. 4. Naaman, A.E. and H. Najm, Bond-slip mechanisms of steel fibers in concrete. Materials Journal, 1991. 88(2): p. 135-145. 5. 郭耀仁, 高強度鋼纖維混凝土的力學性質與圍束效應之研究, in 土木工程學研究所. 2012, 國立臺灣大學. p. 1-116. 6. Kim, D.J., S. El-Tawil, and A.E. Naaman, Loading rate effect on pullout behavior of deformed steel fibers. ACI Materials Journal, 2008. 105(6): p. 576. 7. Ezeldin, A.S. and P.N. Balaguru, Normal‐ and High‐Strength Fiber‐Reinforced Concrete under Compression. Journal of Materials in Civil Engineering, 1992. 4(4): p. 415-429. 8. Soroushian, P.L., Cha-Don, Constitutive Modeling of Steel Fiber Reinforced Concrete Under Direct Tension and Compression. Fibre Reinforced Cements and Concretes: Recent Developments. 1989, London and New York: Elsevier Applied Science. 9. Ou, Y.-C., et al., Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. Journal of Materials in Civil Engineering, 2012. 24(2): p. 207-215. 10. Liao, W.-C., W. Perceka, and E.-J. Liu, Compressive Stress-Strain Relationship of High Strength Steel Fiber Reinforced Concrete. Journal of Advanced Concrete Technology, 2015. 13(8): p. 379-392. 11. Naaman, A.E. High performance fiber reinforced cement composites: classification and applications. in CBM-CI international workshop, Karachi, Pakistan. 2007. Citeseer. 12. Fantilli, A.P., H. Mihashi, and P. Vallini, Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension. Cement and Concrete Research, 2009. 39(12): p. 1217-1229. 13. Liao, W.-C., W. Perceka, and L.-C. Yu, Systematic Mix Procedures for Highly Flowable-Strain Hardening Fiber Reinforced Concrete (HF-SHFRC) by Using Tensile Strain Hardening Responses as Performance Criteria. Science of Advanced Materials, 2017. 9(7): p. 1157-1168. 14. Hwang, S.-J. and H.-J. Lee, Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model. Journal of Structural Engineering, 2002. 128(12): p. 1519-1526. 15. 李宏仁, 鋼筋混凝土耐震梁柱接頭剪力強度之研究, in 營建工程系. 2000, 國立臺灣科技大學: 台北市. p. 295. 16. Paulay, T. and M.N. Priestley, Seismic design of reinforced concrete and masonry buildings. Vol. 768. 1992: Wiley New York. 17. Vecchio, F.J. and M.P. Collins, Compression response of cracked reinforced concrete. Journal of structural engineering, 1993. 119(12): p. 3590-3610. 18. Belarbi, A. and T.T. Hsu, Constitutive laws of softened concrete in biaxial tension compression. Structural Journal, 1995. 92(5): p. 562-573. 19. Zhang, L.-X.B. and T.T. Hsu, Behavior and analysis of 100 MPa concrete membrane elements. Journal of Structural Engineering, 1998. 124(1): p. 24-34. 20. 陳韋丞, 高強度鋼纖維混凝土深梁剪力行為研究, in 土木工程學研究所. 2018, 國立臺灣大學: 台北市. p. 144. 21. Mansour, M.Y., T.T.C. Hsu, and Y.L. Mo, Constitutive relations of cracked reinforced concrete with steel fibers. American Concrete Institute, ACI Special Publication, 2009: p. 101-121. 22. 洪崇文, 添加鋼纖維對於高強度混凝土瓶狀壓拉桿行為之影響, in 土木工程學研究所. 2020, 國立臺灣大學: 台北市. p. 341. 23. Wagh, S.K., et al., Effect of steel fibers on the compression behavior of isolated reinforced concrete panel: An experimental investigation and analytical model. Structures, 2024. 70. 24. Naaman, A., A statistical theory of strength for fiber reinforced concrete. 2005. 25. Razvi, S. and M. Saatcioglu, Tests of high strength concrete columns under concentric loading. Rep. No. OCEERC 96, 1996. 3: p. 147. 26. Sheikh, S. and S. Uzumeri, Strength and Ductility of Tied Concrete Columns. ASCE J Struct Div, 1980. 106: p. 1079-1102. 27. 曾笠維, 以鋼纖維取代橫向箍筋於New RC柱之應用評估, in 土木工程學研究所. 2014, 國立臺灣大學: 台北市. p. 238. 28. Foster Stephen, J., J. Liu, and A. Sheikh Shamim, Cover Spalling in HSC Columns Loaded in Concentric Compression. Journal of Structural Engineering, 1998. 124(12): p. 1431-1437. 29. 王又德, 高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究, in 土木工程學研究所. 2015, 國立臺灣大學: 台北市. p. 127. 30. Mander, J.B., M.J.N. Priestley, and R. Park, Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 1988. 114(8): p. 1804-1826. 31. 楊巽閎, 新建含挫屈束制支撐之實尺寸兩層樓 鋼筋混凝土構架耐震設計與實驗研究. 2015. 32. 黃潔倫, <104黃潔倫-含挫屈束制支撐之新建鋼筋混凝土構架耐震設計與反應分析研究.pdf>. 2015. 33. Lin, P.C., et al., Seismic design and experiment of single and coupled corner gusset connections in a full‐scale two‐story buckling‐restrained braced frame. Earthquake Engineering & Structural Dynamics, 2015. 44(13): p. 2177-2198. 34. Tsai, C.Y., et al., Seismic performance analysis of BRBs and gussets in a full‐scale 2‐story BRB‐RCF specimen. Earthquake Engineering & Structural Dynamics, 2018. 47(12): p. 2366-2389. 35. 蔡克銓, 潘.吳.李., 挫屈束制支撐鋼框補強鋼筋混凝土構架之研究. 結構工程, 2015. 第三十卷(第四期): p. 第 41‐64 頁 36. Bai, J., et al., Seismic performance analysis of PBL gusset connections in buckling-restrained braced RC frames. Journal of Building Engineering, 2021. 42. 37. Bai, J., et al., Seismic design and subassemblage tests of buckling-restrained braced RC frames with shear connector gusset connections. Engineering Structures, 2021. 234. 38. Ling, Y.C., S. Mogili, and S.J. Hwang, Parameter optimization for Pivot hysteresis model for reinforced concrete columns with different failure modes. Earthquake Engineering & Structural Dynamics, 2022. 51(10): p. 2167-2187. 39. Qu, Z., et al., Subassemblage Cyclic Loading Tests of Buckling-Restrained Braced RC Frames with Unconstrained Gusset Connections. Journal of Structural Engineering, 2016. 142(2). 40. 王映捷, 應用高強度應變硬化鋼纖維混凝土於New RC構架與鋼斜撐接合之設計分析. 2023. 41. Huang, Y., Q. Wu, and T. Tang, Seismic Performance and Design of the Fully Assembled Precast Concrete Frame with Buckling-Restrained Braces. Buildings, 2022. 12(11). 42. Moehle, J.P., J.D. Hooper, and C.D. Lubke, Seismic Design of Reinforced Concrete Special Moment Frames. 2008. 43. Perceka, W., W.-C. Liao, and Y.-F. Wu, Shear Strength Prediction Equations and Experimental Study of High Strength Steel Fiber-Reinforced Concrete Beams with Different Shear Span-to-Depth Ratios. Applied sciences., 2019. 9(22): p. 4790. 44. 蔡尚恩, 鋼纖維混凝土五螺箍柱與外部梁柱接頭之反復側推行為研究, in 土木工程學系. 2024, 國立臺灣大學: 台北市. p. 202. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98772 | - |
| dc.description.abstract | 挫曲束制支撐(BRB)已經廣泛運用在鋼結構建築之中,但在鋼筋混凝土建築中之利用仍然較少,在有限的接合案例中,預埋鐵件方法因其穩定之接合效果而得到了最多的學術注目。唯BRB往往連接在鋼筋混凝土(RC)構架之梁柱不連續區,恰為箍筋最密集區域,因此若要預埋額外鐵件進入RC構架中將會使施工過程更加複雜。過往研究指出,若在混凝土中加入鋼纖維,能顯著提高混凝土材料韌性和剪力強度。這能減少RC梁柱端對於橫向箍筋量的需求,降低鋼筋籠綁紮的繁瑣,使BRB在連接上更為簡單和方便,未來無論是補強亦或是新建構架都能有更大的發展。
因此本研究進行一簡化配置實驗探討鋼纖維混凝土與BRB連接之效益[謝昀庭,2025]。主要有三大設計重點,一為梁柱接頭和梁端改用鋼纖維混凝土;二為BRB與RC構架接合僅在梁端;三為控制梁端塑鉸位置。本研究利用SAP2000、ABAQUS等有限元分析軟體針對實驗細節和改動進行模擬,提供詳細之模型設定細節和操作流程,並將模擬結果與實際實驗結果進行比較,以提出鋼纖維接合BRB構件之設計方法和模擬流程。 分析結果顯示使用鋼纖維混凝土接合BRB能在較少箍筋用量和接合步驟條件下,維持與一般BRB接合RC構架相同破壞模式,BRB先產生塑鉸,再來才是RC構架的破壞。實際試驗中之力量分布與模型模擬結果大致相同,唯試驗中因試驗施作相關問題使柱在2%降伏,柱降伏後之彎矩傳遞導致接合段梁亦有降伏情況產生,並非先前預測之接合段外部梁降伏內部保持彈性。此外,最終BRB在5% 拉力破壞,力量大幅下降,此時RC構架之破壞行為為梁柱接頭剪力破壞,本研究認為是因BRB僅接在梁端,對梁端和梁柱接頭造成可觀之水平力和垂直力,使得梁柱接頭預測失準,成為最終發展破壞之弱面。 本研究最後提出相關模擬修正建議和未來實驗之可能修正方法,使模擬結果得以更加貼近實際結構行為。 | zh_TW |
| dc.description.abstract | Buckling-Restrained Braces (BRBs) have been widely adopted in steel structures due to their excellent energy dissipation capacity. However, their application in reinforced concrete (RC) structures remains limited. Among the few existing connection strategies, embedded steel plates have attracted academic attention due to their stable performance. However, BRBs are typically installed at D-region of RC beam-column joints, which are areas of dense transverse reinforcement. Embedding additional steel components into such congested regions complicates construction procedure.
Previous studies have shown that combining steel fibers into concrete significantly enhances its toughness ratio and shear strength. This improvement reduces the need for dense transverse reinforcement in beam-column joints, alleviating reinforcement congestion and simplifying BRB connection details. As a result, this approach holds great promise for both retrofitting and new construction. This study conducts a simplified configuration experiment to explore the effectiveness of connecting BRBs using steel fiber reinforced concrete (SFRC) [Hsieh, 2025]. The experiment focuses on three major design modifications: First, using SFRC at beam-column joints and beam ends; Second connecting the BRB only to the beam ends, instead of the beam-column joint; Third, Controlling the plastic hinge formation at the beam ends. Finite element simulations were performed using SAP2000 and ABAQUS to replicate the experimental setup and modifications. The study provides detailed modeling procedures and compares simulation outcomes with physical test results to propose a practical design and modeling framework for BRB-SFRC connections. Analysis results show that using SFRC enables BRB-RC connections to maintain stable during cycling load. That the plastic hinging of the BRB occurred first and followed by RC frame, even with reduced stirrup ratios and simplified connection details. However, due to testing execution issues, yielding accidently occurred in the column at 2% drift, which led to moment transfer and unexpected yielding at the connection zone of the beam. This deviated from the anticipated behavior where yielding place of beam should occur outside the connection region while the connection zone remained elastic. Eventually, BRB’s tensile failure occurred under 5%, with a sudden drop in horizontal force. At this stage, the RC structure experienced shear failure at the beam-column joint. It’s because the BRB being connected solely at the beam end, inducing considerable horizontal and vertical forces that were underestimated in the design, making the joint the weakest point of failure. The study concludes by proposing revised modeling recommendations and experimental improvements to better align future simulations with actual structural behavior. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:08:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:08:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 III Abstract V 目次 VII 圖次 X 表次 XVI 第一章、 緒論 1 1.1 動機與目的 1 1.2 研究範圍與內容 1 1.3 研究架構 2 1.4 研究流程圖 3 第二章、 文獻回顧 4 2.1 鋼纖維混凝土 4 2.1.1 添加鋼纖維於混凝土之力學影響 4 2.1.2 端鉤型鋼纖維之拉拔行為 9 2.1.3 鋼纖維混凝土抗壓試驗之力學行為 11 2.1.4 鋼纖維混凝土抗拉試驗之力學行為 15 2.2 軟化拉壓桿模型 19 2.2.1 計算方式與相關參數 22 2.2.2 鋼纖維混凝土軟化拉壓桿模型 27 2.3 鋼纖維混凝土韌性行為 33 2.3.1 韌性指標 33 2.3.2 鋼筋混凝土韌性比 34 2.3.3 鋼纖維混凝土韌性比 36 2.4 挫曲束制支撐 38 2.4.1 挫曲束制支撐簡介 38 2.4.2 挫曲束制支撐之組成 39 2.4.3 挫曲束制支撐之力學行為及特性 40 2.4.4 接合版之力學行為 43 2.5 挫曲束制支撐與混凝土構架接合方式 45 2.5.1 預埋工字形鐵件 45 2.5.2 預埋接合版 46 2.6 BRB-RCF構架破壞順序 50 2.6.1 Pivot模型 50 2.6.2 塑鉸控制 52 第三章、 試驗介紹與分析 56 3.1 試驗與試體介紹 56 3.1.1 混凝土構件尺寸 57 3.1.2 BRB構件尺寸 58 3.1.3 接合方式 60 3.2 SAP2000結構分析模型介紹與方法 61 3.2.1 模型介紹 61 3.2.2 材料設定 63 3.2.3 斷面設定 64 3.2.4 塑鉸設定 65 3.2.5 力量設定 77 3.3 接合版Abaqus模型 80 第四章、 模擬分析結果 82 4.1 SAP2000實驗分析模型結果 82 4.1.1 破壞順序 82 4.1.2 塑鉸控制 84 4.1.3 剪力強度檢核 86 4.1.4 遲滯迴圈行為 90 4.2 Abaqus接合版行為分析結果 92 第五章、 試驗結果與模擬比較分析 100 5.1 材料試驗結果 100 5.1.1 混凝土抗壓試驗 100 5.1.2 鋼筋直接拉力試驗 101 5.2 反覆側推結果分析比較 101 5.2.1 反覆側推試驗 101 5.2.2 破壞模式比較 102 5.2.3 遲滯迴圈比較 107 5.3 模型與設計調整 110 第六章、 結論與建議 114 6.1 結論 114 6.2 建議 114 參考文獻 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋼纖維 | zh_TW |
| dc.subject | 挫曲束制支撐 | zh_TW |
| dc.subject | 反覆側推 | zh_TW |
| dc.subject | 鋼構與 RC 接合 | zh_TW |
| dc.subject | SAP2000 模擬分析 | zh_TW |
| dc.subject | ABAQUS 模擬分析 | zh_TW |
| dc.subject | cyclic behavior | en |
| dc.subject | steel fiber | en |
| dc.subject | ABAQUS simulation | en |
| dc.subject | SAP2000 simulation | en |
| dc.subject | RC and steel connection | en |
| dc.subject | Buckling-Restrained Braces | en |
| dc.title | 以鋼纖維混凝土簡化 BRB 與RC 構架接合之模擬與分析 | zh_TW |
| dc.title | Experimental Analysis of Simplified Connections Between BRB and RC Frames Using Highly Flowable Strain Hardening Steel Fiber Reinforced Concrete | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹穎雯;胡瑋秀;林克強 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Chan;Wei-Hsiu Hu;Ker-Chun Lin | en |
| dc.subject.keyword | 鋼纖維,挫曲束制支撐,反覆側推,鋼構與 RC 接合,SAP2000 模擬分析,ABAQUS 模擬分析, | zh_TW |
| dc.subject.keyword | steel fiber,Buckling-Restrained Braces,cyclic behavior,RC and steel connection,SAP2000 simulation,ABAQUS simulation, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202504010 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 11.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
