Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 積體電路設計與自動化學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98768
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author張怡君zh_TW
dc.contributor.authorYi-Chun Changen
dc.date.accessioned2025-08-19T16:07:50Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] D. Reusch, "High frequency, high power density integrated point of load and bus converters," Ph.D. dissertation, Virginia Tech, USA, 2012.
[2] George Lakkas, "MOSFET power losses and how they affect power-supply efficiency," Analog Appl. J., Enterprise Systems, 2016.
[3] M. Halamicek, T. Moiannou, N. Vukadinović and A. Prodić, "Capacitive Divider Based Passive Start-up Methods for Flying Capacitor Step-down DC-DC Converter Topologies," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018, pp. 831-837.
[4] Nenad Vukadinovic, “Low-Power Multi-Level Flying Capacitor Converters - Modeling and Control”, PhD. Dissertation, University of Toronto,2018
[5] Y. Yamauchi, T. Sai, T. Sakurai, and M. Takamiya, “Modeling of 3-level buck converters in discontinuous conduction mode for stand-by mode power supply,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.
[6] Sijie Pan and Philip K. T. Mok, "A 25 MHz Fast Transient Adaptive-On/Off-Time Controlled Three-Level Buck Converter," IEEE Trans. Circuits Syst. I, Reg papers
[7] G. Villar and E. Alarcon, "Inductor-current zero-crossing detection mixed-signal CMOS circuit for a DCM-operated 3-level switching power converter," IEEE International Symposium on Circuits and Systems, May. 2008, pp. 2606-2609.
[8] G. Villar, E. Alarcon, F. Guinjoan and A. Poveda, "Automatic dead-time adjustment CMOS mixed-signal circuit for a DCM-operated 3-level switching power converter," IEEE International Symposium on Circuits and Systems, May, 2008, pp. 3053-3056.
[9] S. J. Kim, R. K. Nandwana, Q. Khan, R. Pilawa-Podgurski and P. K. Hanumolu, "12.2 A 1.8V 30-to-70MHz 87% peak-efficiency 0.32mm2 4-phase time-based buck converter consuming 3μA/MHz quiescent current in 65nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[10] M. K. Song, J. Sankman and D. Ma, "4.2 A 6A 40MHz four-phase ZDS hysteretic DC-DC converter with 118mV droop and 230ns response time for a 5A/5ns load transient," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 80-81.
[11] W. Chen et al., "Pseudo-constant switching frequency in on-time controlled buck converter with predicting correction techniques," IEEE Trans. Power Electron., vol.31, no. 5, pp. 3650-3662, May 2016.
[12] C. -Y. Hong, C. -J. Tsai and C. -J. Chen, "A gm-ramped interleaving technique with adaptive-extended TON control (AETC) scheme for multi-phase buck converter achieving fast load response," in Proc. IEEE Appl. Power Electron. Conf. Expo.(APEC), 2020, pp. 326-331.
[13] Ting-Lun Lee “A Three-Level Buck Converter with Force Constant On-Time Control and Discontinuous Conduction Mode Operation” M.S. Thesis.
[14] Guo-Wei Li “A Fast Transient Response Three-Level Buck Converter with Capacitor-Current Inverse-Charge-COT (iCAPQCOT) Control” M.S. Thesis.
[15] S. Bari, Q. Li and F. C. Lee, "High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6000-6007.
[16] S. Bari, Q. Li and F. C. Lee, "A new current mode control for higher noise immunity and faster transient response in multi-phase operation," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 2078-2083.
[17] J. Chen, R. Erickson, and D. Maksimovic, “Averaged switch modeling of boundary conduction mode dc-to-dc converters,” in Proc. IEEE IECON, Nov. 2001, pp. 844–849.
[18] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., New York, NY, USA: Springer, 2001.
[19] X. Liu, C. Huang and P. K. T. Mok, "A high-frequency three-level Buck converter with real-time calibration and wide output range for fast-DVS," IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 582-595, Feb. 2018.
[20] X. Liu, P. K. T. Mok, J. Jiang, and W.-H. Ki, “Analysis and design considerations of integrated 3-level buck converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 5, pp. 671–682, May 2016.
[21] Y. -Y. Lin, " A Bidirectional Three-Level Converter with Single Point Sensing Technique for Flying Capacitor Balance," Master. dissertation, NTUEE, 2022.
[22] S. -J. Lee et al., "30.5 A 95.3% 5V-to-32V Wide Range 3-Level Current Mode Boost Converter with Fully State-based Phase Selection Achieving Simultaneous High-Speed VCF Balancing and Smooth Transition," 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, pp. 446-448.
[23] L. Lu, T. Moiannou and A. Prodić, "Single-mode near minimum deviation controller for multi-level flying capacitor converters," in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 2019, pp. 1751-1757.
[24] K. Jin, M. Yang, X. Ruan and M. Xu, "Three-level bidirectional converter for fuelcell/battery hybrid power system," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976-1986, June 2010.
[25] G. Villar and E. Alarcon, "Monolithic integration of a 3-level DCM operated low-floating-capacitor buck converter for DC–DC step-down donversion in standard CMOS," in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008, pp. 4229–4235.
[26] J. -R. Tsai et al., "Improvement of CMOS latch-up in bootstrapping circuit application," 2014 International Symposium on Next-Generation Electronics (ISNE), Kwei-Shan Tao-Yuan, Taiwan, 2014, pp. 1-4.
[27] J. Xue and H. Lee, "12.5 A 2MHz 12-to-100V 90%-efficiency self balancing ZVS three-level DC-DC regulator with constant-frequency AOT V2 control and 5ns ZVS turn-on delay," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San FFrancisco, CA, USA, 2016, pp. 226-227.
[28] L. -C. Chu et al., "10.5 A three-level single-inductor triple-output converter with an adjustable flying-capacitor technique for low output ripple and fast transient response," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp. 186-187.
[29] Y. Karasawa, T. Fukuoka and K. Miyaji, "A 92.8% Efficiency Adaptive-On/Off-Time Control 3-Level Buck Converter for Wide Conversion Ratio with Shared Charge Pump Intermediate Voltage Regulator," 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI,USA, 2018, pp. 227-228.
[30] S. C. Huerta, A. Soto, P. Alou, J. A. Oliver, O. García and J. A. Cobos, "Advanced Control for Very Fast DC-DC Converters Based on Hysteresis of the ${C}_{out}$ Current," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 1052-1061.
[31] S. -Y. Huang, K. -Y. Fang, Y. -W. Huang, S. -H. Chien and T. -H. Kuo, "12.6 Capacitor-current-sensor calibration technique and application in a 4-phase buck converter with load-transient optimization," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016, pp. 228-229.
[32] Y. -L. Chao, C. -J. Tsai and C. -J. Chen, "A 4-MHz Ultra-Fast Transient Response Capacitor Current Adaptive On-Time (CCAOT) Controlled Buck Converter with Passive Ramp Compensation," 2022 (IPEC-Himeji 2022- ECCE Asia), pp. 1511-1516.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98768-
dc.description.abstract本論文提出一種新穎的脈衝頻率調變(PFM)控制技術,應用於三階降壓型轉換器,旨在於寬廣的工作占空比與負載範圍內維持卓越的效率。由於此類交錯訊號轉換器在使用傳統的固定導通時間(COT)控制下,於轉換比(M)大於 0.5 的不連續導通模式(DCM)中無法隨負載調整其開關頻率,使得輕載條件的切換頻率與切換損失較高,本文提出延長導通時間(Ext.-Ton)的方法以應對此問題。此外,考量到三階降壓轉換器在 M > 0.5 區域採用 COT 控制時可能產生的不穩定性,以及 M 接近 0.5 時存在零電流漣波點,本文選用 ICAPQOT 控制作為主要調變策略,以無需外加斜坡的方式維持系統穩定運作。進一步地,本文亦提出一種基於 VLX 節點的感測技術,能於全占空比範圍內有效平衡飛行電容電壓,適用於連續導通模式(CCM)與不連續導通模式(DCM)。預模擬結果顯示,在 CCM 下的開關頻率為 2 MHz,而於 DCM 下則具可變頻操作,並於 20 mA 至 1 A 負載範圍內達到超過 90% 的效率。本晶片採用台積電標準 0.18 μm CMOS 製程實現。最終量測結果來自一顆結合離散功率級的控制器晶片,與IQCOT控制相比,展現 200%的暫態響應的回穩時間改善。並且與傳統固定導通時間(COT)控制相比, 於Vo/Vin = 1.8/2.5 且 Io = 20 mA 條件下達成 428% 的電感電流切換頻率下降,驗證了 ICAPQCOT 控制與延長導通時間模式之有效性。zh_TW
dc.description.abstractThis work presents a novel control technique of Pulse Frequency Modulation (PFM) on a three-level buck converter, to keep remarkable efficiency within a wide range of duty cycle and loading. Since this interleaved signal converter with conventional constant on-time control cannot scale its switching frequency with load under discontinuous conduction mode when the conversion ratio(M) is larger than 0.5, leading to higher switching loss at light-load condition. Therefore, an on-time extension (Ext.-Ton) method is applied. Moreover, due to the instability when applying conventional constant on-time (COT) control to a three-level buck converter for M>0.5 and the presence of a zero-ripple point around M ≈ 0.5, the ICAPQOT control is selected as the primary modulation technique to maintain stable operation without the need for external ramp. Additionally, a VLX-based sensing technique is introduced to ensure effective flying capacitor voltage balancing in both CCM and DCM among full duty cycle. The pre-simulation results demonstrate a switching frequency of 2MHz in CCM and a variable frequency in DCM, achieving efficiency greater than 90% when load current ranging from 20mA to 1A. The chip is fabricated using a TSMC standard 0.18um CMOS process. The final measurement result is obtained using the controller chip combining with a discrete power stage, showing a 200% improvement in transient response compared to the IQCOT control. Furthermore, in comparison with COT control, a 428% reduction in switching frequency is achieved at Vo/Vin=1.8/2.5 and Io=20mA. These findings confirm the effectiveness of both the ICAPQCOT control and Ext.-Ton mode.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:07:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:07:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract iv
Table of Content vi
List of Figures ix
List of Tables xvi
Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.2 Comparing Topologies: Three-Level vs. Conventional Buck Converters 3
1.3 Research Objectives and Chip Specifications 7
1.4 Thesis Outline 9
Chapter 2. Review of Main Modulator 11
2.1 Review of Adaptive Constant On-Time Control on Three-Level Buck Converter 11
2.2 Review of Capacitor-Current Inverse-Charge-COT Control (ICAPQCOT) 15
2.3 Flying Capacitor Voltage Balance Control - Full-Range VLX Sensing 21
Chapter 3. Analysis of DCM operation in Three-Level Buck Converter 29
3.1 3-L Converter Small Signal Analysis in DCM 29
3.2 DCM Behavior in 3-L Buck Converters with Constant On-Time Control 38
3.3 Summary of Prior-Art Issues 44
Chapter 4. Concept of Proposed Extending On- Time Control 48
4.1 System Architecture of Proposed Three-Level Buck Converter 48
4.2 Concept of Proposed Extending On-Time Control 49
4.3 Behavior Verification by SIMPLIS simulation 58
Chapter 5. Circuit implementation 62
5.1 Impact of Process Corners and Temperature Variations in TSMC 180nm CMOS 62
5.2 Power Stage 64
5.2.1 Bootstrapped Circuit 64
5.2.2 Level Shifter 66
5.2.3 Start-Up 69
5.3 Controller Circuit 72
5.3.1 Voltage Controlled Current Source (VCCS) 72
5.3.2 Zero Current Detection (ZCD) Circuit 75
5.3.3 The Proposed Extending On-Time Control 80
5.3.4 Cap Sensor 81
5.4 Simulation Result 83
Chapter 6. Chip Measurement Results and Discrete Power Stage 88
6.1 Chip A (Full Chip w/Power Stage and Controller) 89
6.1.1 Chip Overview and Setup 89
6.1.2 Measurement Results and Limitations 98
6.2 Chip B (Controller Only, w/Discrete Power Stage) 104
6.2.1 Discrete Power Stage Implementation 105
6.2.2 Chip Overview and Setup 108
6.2.3 Measurement Results 114
Chapter 7. Conclusion and Future Works 137
7.1 Conclusions 137
7.2 Future Works 139
Reference 142
-
dc.language.isoen-
dc.subject三階降壓式轉換器zh_TW
dc.subject脈衝頻率調變zh_TW
dc.subject不連續導通模式zh_TW
dc.subject導通時間延長控制zh_TW
dc.subject電容反向充電的固定導通時間控制zh_TW
dc.subject飛行電容平衡控制zh_TW
dc.subjectDCM Operationen
dc.subjectThree-Level Buck converteren
dc.subjectFlying Capacitor Balancingen
dc.subjectCapacitor-Inverse Charge COTen
dc.subjectOn-Time Extension Controlen
dc.subjectPulse Frequency Modulationen
dc.title應用導通時間延伸技術於三階降壓轉換器之改良型PFM控制策略zh_TW
dc.titleAn improved PFM control scheme for Three-Level Buck Converter based on Ton Extensionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳耀銘;陳偉倫zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Woei-Luen Chenen
dc.subject.keyword三階降壓式轉換器,脈衝頻率調變,不連續導通模式,導通時間延長控制,電容反向充電的固定導通時間控制,飛行電容平衡控制,zh_TW
dc.subject.keywordThree-Level Buck converter,Pulse Frequency Modulation,DCM Operation,On-Time Extension Control,Capacitor-Inverse Charge COT,Flying Capacitor Balancing,en
dc.relation.page145-
dc.identifier.doi10.6342/NTU202503545-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept積體電路設計與自動化學位學程-
dc.date.embargo-lift2028-08-04-
顯示於系所單位:積體電路設計與自動化學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved