Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98767
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱美妃zh_TW
dc.contributor.advisorMei-Fei Chuen
dc.contributor.author黃子權zh_TW
dc.contributor.authorTz-Chuan Hwangen
dc.date.accessioned2025-08-19T16:07:37Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation李寄嵎,蔡榮浩,何孝恆,楊燦堯,鍾孫霖,陳正宏(1997)應用X光螢光分析儀從事岩石樣品之定量分析(I)主要元素。中國地質年會八十六年年會,第418-420頁。
Alves, P., Bobba, S., Carrara, S. & Plazzotta, B. (2020). The role of rare earth elements in wind energy and electric mobility. Publications Office of the European Union, Luxembourg, JRC122671.
Babechuk, M.G., Widdowson, M. & Kamber, B.S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, 56-75.
Bamforth, T.G., Xia, F., Putnis, A., Brugger, J., Hu, S.-Y., Roberts, M.P., Suvorova, A. & Pring, A. (2024). Hydrothermal mineral replacement in the apatite-rhabdophane-monazite system: Experiments, reaction mechanisms and geological implications. Chemical Geology, 666, 122307.
Bellon, H., Maury, R., Sutanto, Soeria-Atmadja, R., Cotton, J. & Polvé, M. (2004). 65 m.y.-long magmatic activity in Sumatra (Indonesia), from Paleocene to Present. Bulletin de la Société Géologique de France, 175, 61-72.
Bennett, J., Bridge, D., Cameron, N., Djunuddin, A., Ghazali, S., Jeffery, D., Kartawa, W., Keats, W., Rock, N., Thomson, S. & Whandoyo, R. (1981). Peta Geologi Lembar Bandaaceh, Sumatra. Pusat Penelitian Dan Pengembangan Geologi, Indonesia.
Booden, M.A., Smith, I.E.M., Mauk, J.L. and Black, P.M. (2010). Evolving volcanism at the tip of a propagating arc: The earliest high-Mg andesites in northern New Zealand. Journal of Volcanology and Geothermal Research, 195, 83-96.
Bouvier, A., Vervoort, J.D. & Patchett, P.J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57.
Cetiner, Z.S., Wood, S.A. & Gammons, C.H. (2005). The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 °C. Chemical Geology, 217, 147-169.
Colman, S.M. (1982). Chemical weathering of basalts and andesites: Evidence from weathering rinds. Geological Survey Professional Paper, 1246.
Cotten, J., Le Dez, A., Bau, M., Caroff, M., Maury, R.C., Dulski, P., Fourcade, S., Bohn, M. & Brousse, R. (1995). Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: Evidence from French Polynesia. Chem. Geol. 119, 115-138.
Cunningham, H. S., Turner, S. P., Dosseto, A., Patia, H., Eggins, S. M. & Arculus, R. J. (2009). Temporal variations in U-series disequilibria in an active caldera, Rabaul, Papua New Guinea. Journal of Petrology, 50, 507-529.
de Kerdaniel, E.D.F., Clavier, N., Dacheux, N., Terra, O. & Podor, R. (2007). Actinide solubility-controlling phases during the dissolution of phosphate ceramics. Journal of Nuclear materials, 362, 451-458.
Fodor, R.V., Frey, F.A., Bauer, G.R. & Clague, D.A. (1992). Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and lakalic baslats from Kahoolawe Island, Hawaii. Contributions to Mineralogy and Petrology 110, 442-462.
Frey, H.M., Szramek, K.J., Manon, M.R. & Kissane, M.T. (2013). Slow chemical weathering in a semiarid climate: Changes in the mineralogy and geochemistry of subaerial lava flows in the Deschutes River Basin, central Oregon. Chemical Geology 347, 135-152.
Gausse, C., Szenknect, S., Qin, D.W., Mesbah, A., Clavier, N., Neumeier, S., Bosbach, D. & Dacheux, N. (2016). Determination of the solubility of rhabdophanes LnPO4·0.667H2O (Ln = La to Dy). European Journal of Inorganic Chemistry, 2016, 4615-4630.
Gysi, A.P. & Harlov, D. (2021). Hydrothermal solubility of TbPO4, HoPO4, TmPO4 and LuPO4 xenotime endmembers at pH of 2 and temperatures between 100 and 250 °C. Chemical Geology, 567, 120072.
Gysi, A.P., Harlov, D. & Miron, G.D. (2018). The solubility of monazite (CePO4), SmPO4, and GdPO4 in aqueous solutions from 100 to 250 °C. Geochimica et Cosmochimica Acta, 242, 143-164.
Heming, R.F. & Rankin, P.C. (1979). Ce-anomalous lavas from Rabaul caldera, Papua New Guinea. Geochimica et Cosmochimica Acta, 43, 1351-1355.
Hurtig, N.C., Gysi, A.P., Smith-Schmitz, S.E. & Harlov, D. (2024). Raman spectroscopic study of anhydrous and hydrous REE phosphates, oxides, and hydroxides. Dalton Transactions, 23, 9964-9978.
Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G., Maran, M. & Mahlia, T. (2019). Geochemistry exploration and geothermal application in the north zone of Seulawah Agam, Aceh Besar District, Indonesia. Energys 12, 4442.
Irvine, T.N. & Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rock. Canadian Journal of Earth Science, 8, 523-548.
Kuschel, E. & Smith, I.E.M. (1992). Rare earth mobility in young arc-type volcanic rocks from northern New Zealand. Geochimica et Cosmochimica Acta 56, 3951-3955.
Lafuente, B., Downs, R.T., Yang, H. & Stone, N. (2015). The power of databases: the RRUFF project. In: Armbruster, T. and Danisi, R.M. (Eds), Highlights in Mineralogical Crystallography, pp. 1-30, Berlin.
Lai, Y.-M., Chung, S.-L., Ghani, A.A., Murtadha, S., Lee, H.-Y. & Chu, M.-F. (2021). Mid-Miocene volcanic migration in the westernmost Sunda arc induced by India-Eurasia collision. Geology, 49, 713-717.
Lehnert, K., Su, Y., Langmuir, C.H., Sarbas, B. & Nohl, U. (2000). A global geochemical database structure for rocks. Geochemistry, Geophysics, Geosystems, 1, 1012.
Lin, I.-J., Chung, S.-L., Chu, C.-H., Gallet, S., Wu, G., Ji, J. & Zhang, Y. (2012). Geochemical and Sr-Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 53, 131-150.
Lucas, S., Champion, E., Bernache-Assollant, D. & Leroy, G. (2004). Rare earth phosphate powders RePO4·nH2O (Re = La, Ce or Y) II. Thermal behavior. Journal of Solid State Chemistry, 177, 1312-1320.
McDonough, W.F. & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120, 223-253.
Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S. & Dacheux, N. (2017). In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4·0.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy). Journal of Solid State Chemistry, 249, 221-227.
Migdisov, A., Williams-Jones, A.E., Brugger, J. & Caporuscio, F.A. (2016). Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439, 13-42.
Migdisov, A.A. & Williams-Jones, A.E. (2014). Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner Deposita, 49, 987-997.
Nixon, G.T. & Pearce, T.H. (1987). Laser-interferometry study of oscillatory zoning in plagioclase: The record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccihuatl volcano, Mexico. American Mineralogist, 72, 1144-1162.
Ochiai, A. & Utsunomiya, S. (2017). Crystal chemistry and stability of hydrated rare-earth phosphates formed at room temperature. Minerals, 7, 84.
Pan, R., Gysi, A.P., Miron, G.D. & Zhu, C. (2024). Optimized thermodynamic properties of REE aqueous species (REE3+ and REEOH2+) and experimental database for modeling the solubility of REE phosphate minerals (monazite, xenotime, and rhabdophane) from 25 to 300 °C. Chemical Geology, 643, 121817.
Patino, L.C., Velbel, M.A., Price, J.R. & Wade, J.A. (2003). Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chemical Geology 202, 343-364.
Pfänder, J. A., Münker, C., Stracke, A. & Mezger, K. (2007). Nb/Ta and Zr/Hf in ocean island basalts - Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 254, 158-172.
Price, R.C., Gray, C.M., Wilson, R.E., Frey, F.A. & Taylor, S.R. (1991). The effects of weathering on rare-earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chemical Geology, 93, 245-265.
Rock, N.M.S., Syah, H.H., Davis, A.E., Hutchison, D., Styles, M.T. & Lena, R. (1982). Permian to recent volcanism in Northern Sumatra, Indonesia: a preliminary study of its distribution, chemistry, and peculiarities. Bulletin of Volcanology, 45, 127-152.
Rolland, Y., Galoyan, G., Bosch, D., Sosson, M., Corsini, M., Fornari, M. & Verati, C. (2009). Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites - Implications for the obduction process. Lithos, 112, 163-187.
Rollinson, H. & Pease, V. (2021). Using Trace Element Data. In Using Geochemical Data: To Understand Geological Processes (pp. 96-156). Chapter, Cambridge: Cambridge University Press.
Shelyug, A., Mesbah, A., Szenknect, S., Clavier, N., Dacheux, N. & Navrotsky, A. (2018). Thermodynamics and stability of rhabdophanes, hydrated rare earth phosphates REPO4·nH2O. Frontiers in Chemistry, 6, 604.
Strzelecki, A.C., Migdisov, A., Boukhalfa, H., Sauer, K., McIntosh, K.G., Currier, R.P., Williams-Jones, A.E. & Guo, X. (2022). Fluocerite as a precursor to rare earth element fractoination in ore-forming systems. Nature Geosciences, 15, 327-333.
Sun, S.-S. & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M. & Dragusanu, C. (2000). JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168, 279-281.
Wan, Y., Wang, X., Chou, I-M. & Li, X. (2021). Role of sulfate in the transport and enrichment of REE in hydrothermal systems. Earth and Planetary Science Letters, 569, 117068.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98767-
dc.description.abstract稀土元素(rare earth elements; REEs)為關鍵金屬(critical metals)之一,是現代高科技與能源轉型發展中不可或缺的原料,然而對產業至關重要的中、重稀土元素在自然界中少有發生富集現象。自印尼蘇門答臘島西北端、第四紀島弧火山蘇拉瓦阿甘採集而來的十一件火山岩中,有四件中酸性樣品出現顯著的輕、中,甚至重稀土元素富集(LaN: 114-761; DyN: 29-141; YbN: 32-126),同時伴隨著強烈的鈰負異常(Ce/Ce*: 0.28-0.67)。類似的特殊稀土元素富集現象在文獻中僅有少數案例,且對其成因尚無定論,本研究透過比較「具有」與「不具」特殊稀土元素富集的樣本,根據岩象學、地球化學資料探討其形成機制。
與同岩性但無異常稀土元素富集的樣品相比對,具富集的樣品有相似的岩象(礦物組成、岩石組織)及地球化學(主量元素含量、稀土以外微量元素濃度及鍶、釹、鉿放射性同位素比值)資料;唯獨在四件富集樣本中出現罕見的次生含水稀土磷酸鹽礦物,其中富輕稀土的水磷鈰礦(rhabdophane)通常呈斑塊狀出現在基質或篩狀斜長石斑晶中,偶見置換磷灰石;富重稀土的水磷釔礦(churchite)則僅零星發現於其中兩件特殊稀土富集岩樣的篩狀斜長石中。水磷鈰礦及水磷釔礦含有大量稀土元素(ΣREE2O3 ~ 55 wt.%),因此僅須微量(0.12-0.16 wt.%)的水磷鈰礦及水磷釔礦加入,即可將全岩稀土元素濃度提升10倍,造成此特殊稀土元素富集。
兩含水稀土磷酸鹽礦物具有強烈鈰負異常,說明稀土源區曾經歷過氧化作用,且稀土元素富集樣本的釹同位素比值與無富集樣本相似,因此外來稀土元素應源自位在近地表氧化環境中的蘇拉瓦阿甘火山岩。前人文獻指出REE3+能夠被含Cl-或SO42-的流體所溶解、搬運,則富集稀土的蘇拉瓦阿甘溫泉水在與新鮮火山岩接觸後,離子交換使pH值上升,導致水磷鈰礦及水磷釔礦於基質、篩狀斜長石中析出,或者成為磷灰石假象,造成此特殊稀土富集現象
彙整前人案例,可知此類稀土富集的形成不影響其他微量元素之濃度,不受地質架構(島弧、洋島或板內火山)、岩性(基性至中酸性)或氣候(熱帶、溫帶,乾燥或海洋性)侷限,且可在地質尺度上極短的時間內(<0.3 Ma)形成。
zh_TW
dc.description.abstractRare earth elements (REEs), as part of the critical metal, are indispensable to modern high-tech products and global energy transition. However, natural enrichment of the most useful middle and heavy REEs is relatively rare.
Of the eleven volcanic samples collected from Seulawah Agam, a Quaternary arc volcano situated at the northwestern tip of Sumatra, Indonesia, four intermediate to acidic rocks show significant enrichment across all REEs (LaN: 114-761; DyN: 29-141; YbN: 32-126), with an extremely negative Ce anomaly (Ce/Ce*: 0.28-0.67). There are only a few cases of such unique REE enrichment reported in literature, and no consensus on its formation mechanism has been reached. By comparing the petrographic and geochemical data of the REE-enriched and normal samples, this study aims to understand the formation mechanism behind such REE enrichment.
Compared to non-enriched samples, the REE-enriched samples have similar petrographic (mineral assemblages and textures) and geochemical (major elements and non-REE trace element concentrations, as well as Sr-Nd-Hf radiogenic isotopic ratios) features. The difference lies in the presence of secondary hydrous REE phosphate minerals. LREE-enriched “Rhabdophane” occurs in groundmass or as inclusions within sieved plagioclase phenocrysts, occasionally as apatite pseudomorph; HREE-enriched churchite was only found in sieved plagioclase in two of the four REE-enriched samples.
Rhabdophane and churchite both contain large amounts of REE oxides (~55 wt.%), therefore, the addition of 0.12-0.16 wt.% of both minerals is enough to raise the whole-rock REE content by tenfold, causing the observed REE enrichment.
Both REE phosphate minerals contain extremely negative Ce anomaly, likely formed under oxidizing condition. While their Nd isotopic ratio is similar to the non-enriched samples, indicating the additional REE came from volcanic rocks originating from near surface oxidizing environment of Seulawah Agam. Previous studies have shown that REE3+ can be mobilized by Cl- or SO42--bearing acidic fluid. Therefore, when REE-bearing hot spring water from Seulawah Agam came into contact with fresh volcanic rock, ion exchange between the two can cause the pH to rise, inducing the precipitation of rhabdophane and churchite in groundmass or sieved plagioclase, as well as forming apatite pseudomorph, resulting in the REE enrichment.
The integration of literature suggests that this REE-enrichment process does not alter the concentrations of other trace elements, and is not limited by geological setting (e.g., island arcs, ocean islands or intraplate volcanism), rock type (from mafic, intermediate to felsic) or climate (tropical, temperate, arid or oceanic). Moreover, it can occur over a geologically short period of time (<0.3 Ma).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:07:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:07:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 前言 1
1.2 前人研究 3
1.2.1 火山弧 3
1.2.2 洋島火山 7
1.2.3 板內火山 11
1.3 地質背景與樣本 15
第二章 研究方法 16
2.1 岩象學 16
2.1.1 掃描式電子顯微術 17
2.1.2 顯微拉曼光譜術 18
2.2 全岩地球化學 18
2.2.1 全岩主量元素 18
2.2.2 全岩微量元素 19
2.3全岩放射性同位素 19
2.3.1 鍶、釹同位素分析前處理 19
2.3.2 鉿同位素分析前處理 22
2.3.3 質譜儀分析 23
2.4 電子微探分析 24
第三章 分析結果 25
3.1 岩象學 25
3.1.1 光學顯微鏡觀察 25
3.1.2 掃描式電子顯微鏡觀察 25
3.1.3 顯微拉曼光譜分析 31
3.2 地球化學 32
3.2.1 全岩主量元素 32
3.2.2 全岩微量元素 36
3.2.3 全岩鍶、釹、鉿放射性同位素 38
3.3 電子微探分析 39
第四章 討論 49
4.1 含水稀土磷酸鹽礦物與次生稀土元素富集 49
4.2 稀土元素的搬運流體 51
4.2.1 流體中陰離子團的種類 51
4.2.2 流體的酸鹼度 52
4.2.3 流體的溫度 52
4.3 稀土元素來源 53
4.3.1 釹同位素的制約 53
4.3.2 鈰負異常的制約 55
4.4 含水稀土磷酸鹽礦物的形成 56
4.4.1磷灰石周圍的水磷鈰礦 56
4.4.2 篩狀斜長石中的含水稀土磷酸鹽礦物 56
4.4.3 基質中的水磷鈰礦 58
4.5 快速稀土元素富集現象 59
第五章 結論 60
參考文獻 62
附錄一,GEOROC資料庫引用說明 68
附錄二,特殊稀土元素富集現象案例微量元素變化比較 108
-
dc.language.isozh_TW-
dc.subject稀土元素富集zh_TW
dc.subject水磷釔礦zh_TW
dc.subject水磷鈰礦zh_TW
dc.subject鈰負異常zh_TW
dc.subjectChurchiteen
dc.subjectnegative Ce anomalyen
dc.subjectREE enrichmenten
dc.subjectRhabdophaneen
dc.title印尼蘇拉瓦阿甘火山特殊稀土元素富集現象探討zh_TW
dc.titleExploring the Unique Rare Earth Element Enrichment in Seulawah Agam, Indonesiaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴昱銘;彭君能zh_TW
dc.contributor.oralexamcommitteeYu-Ming Lai;Kwan-Nang Pangen
dc.subject.keyword稀土元素富集,鈰負異常,水磷鈰礦,水磷釔礦,zh_TW
dc.subject.keywordREE enrichment,negative Ce anomaly,Rhabdophane,Churchite,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202503173-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved