請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | zh_TW |
| dc.contributor.advisor | Chih-Ping Wei | en |
| dc.contributor.author | 何品諭 | zh_TW |
| dc.contributor.author | Pin-Yu Ho | en |
| dc.date.accessioned | 2025-08-19T16:07:01Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | References
Bach, S. H., Broecheler, M., Huang, B., & Getoor, L. (2017). Hinge-loss markov random fields and probabilistic soft logic. Journal of Machine Learning Research, 18(109), 1-67. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in Neural Information Processing Systems, 26. Chen, X., Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge graph. Expert Systems with Applications, 141, 112948. Chen, Y., Li, H., Li, H., Liu, W., Wu, Y., Huang, Q., & Wan, S. (2022). An overview of knowledge graph reasoning: Key technologies and applications. Journal of Sensor and Actuator Networks, 11(4), 78. Cheng, K., Ahmed, N. K., & Sun, Y. (2023). Neural compositional rule learning for knowledge graph reasoning. arXiv preprint arXiv:2303.03581. Cheng, K., Liu, J., Wang, W., & Sun, Y. (2022, August). Rlogic: Recursive logical rule learning from knowledge graphs. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 179-189). Galárraga, L. A., Teflioudi, C., Hose, K., & Suchanek, F. (2013, May). AMIE: association rule mining under incomplete evidence in ontological knowledge bases. Proceedings of the 22nd International Conference on World Wide Web (pp. 413-422). Guo, L., Sun, Z., & Hu, W. (2019, May). Learning to exploit long-term relational dependencies in knowledge graphs. Proceedings of the 36th International Conference on Machine Learning (pp. 2505-2514). Proceedings of Machine Learning Research. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). SemMedDB: A PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28(23), 3158-3160. Lee, W. T. (2023). Learning logics rules and reasoning on noisy knowledge graphs. Unpublished Master Thesis, Department of Information Management, National Taiwan University. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., ... & Bizer, C. (2015). Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2), 167-195. Li, Z., Liu, H., Zhang, Z., Liu, T., & Xiong, N. N. (2021). Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3961-3973. Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015, February). Learning entity and relation embeddings for knowledge graph completion. Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 29, No. 1). Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., & Chi, E. H. (2018, July). Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1930-1939). Qu, M., Chen, J., Xhonneux, L. P., Bengio, Y., & Tang, J. (2020). Rnnlogic: Learning logic rules for reasoning on knowledge graphs. arXiv preprint arXiv:2010.04029. Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5(3), 239-266. Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1), 107-136. Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018, June). Modeling relational data with graph convolutional networks. European Semantic Web Conference (pp. 593-607). Cham: Springer International Publishing. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., & Zhou, B. (2019, July). End-to-end structure-aware convolutional networks for knowledge base completion. Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 3060-3067). Shengyuan, C., Cai, Y., Fang, H., Huang, X., & Sun, M. (2023). Differentiable neuro-symbolic reasoning on large-scale knowledge graphs. Advances in Neural Information Processing Systems, 36, 28139-28154. Sun, Z., Deng, Z. H., Nie, J. Y., & Tang, J. (2019). Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197. Tang, X., Zhu, S. C., Liang, Y., & Zhang, M. (2022). Rule: Knowledge graph reasoning with rule embedding. arXiv preprint arXiv:2210.14905. Tian, L., Zhou, X., Wu, Y. P., Zhou, W. T., Zhang, J. H., & Zhang, T. S. (2022). Knowledge graph and knowledge reasoning: A systematic review. Journal of Electronic Science and Technology, 20(2), 100159. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016, June). Complex embeddings for simple link prediction. Proceedings of the 33rd International Conference on Machine Learning (pp. 2071-2080). Proceedings of Machine Learning Research. Vashishth, S., Sanyal, S., Nitin, V., & Talukdar, P. (2019). Composition-based multi-relational graph convolutional networks. arXiv preprint arXiv:1911.03082. Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of approaches and applications. IEEE transactions on Knowledge and Data Engineering, 29(12), 2724-2743. Wei, C.P., Tsai, P.Y., & Li, J.J. (2025). Biomedical knowledge graph verification with multitask learning architectures. Working Paper, Department of Information Management, National Taiwan University. Xiong, S., Yang, Y., Fekri, F., & Kerce, J. C. (2024). Tilp: Differentiable learning of temporal logical rules on knowledge graphs. arXiv preprint arXiv:2402.12309. Yang, B., Yih, W. T., He, X., Gao, J., & Deng, L. (2014). Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575. Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base reasoning. Advances in Neural Information Processing Systems, 30. Zhang, J., Chen, B., Zhang, L., Ke, X., & Ding, H. (2021). Neural, symbolic and neural-symbolic reasoning on knowledge graphs. AI Open, 2, 14-35. Zhang, Q., Dong, J., Tan, Q., & Huang, X. (2023). Integrating entity attributes for error-aware knowledge graph embedding. IEEE Transactions on Knowledge and Data Engineering, 36(4), 1667-1682. Zhang, Y., Chen, X., Yang, Y., Ramamurthy, A., Li, B., Qi, Y., & Song, L. (2020). Efficient probabilistic logic reasoning with graph neural networks. arXiv preprint arXiv:2001.11850. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98765 | - |
| dc.description.abstract | 隨著知識圖譜廣泛應用於問答系統、醫療推論與推薦等場域,具可解釋性的推理方法需求日益提升。相較於嵌入式模型的黑盒特性,部分神經推理方法能結合符號規則,提供清晰的邏輯推理,尤其在生醫等知識密集領域更具可信度。然而,這類方法在處理大型異質圖譜時常缺乏語義感知能力,導致所學規則語意品質不穩。
本研究提出 SemRNNLogic方法,在原始 RNNLogic 架構上引入語義輔助任務,結合多任務學習設計,利用生醫圖譜中的實體語義型別資訊,提升模型對規則生成的語義理解與推理能力。具體來說,我們於規則生成的每一步預測過程中,設計兩項語義輔助任務:一為預測下一個關係所屬的語義群組,一為預測下一個實體在推理路徑上的語義型別分布,以強化語意導向的序列生成。 實驗結果顯示,語義導向的多任務模型在 SemMedDB 資料集上整體提升連結預測效能,特別在 MRR、Hit@1 與 Hit@3 等前段排序指標上優於原始模型,顯示語義輔助任務能有效增強規則學習的準確性。 | zh_TW |
| dc.description.abstract | As knowledge graphs are increasingly applied in areas such as question answering, medical reasoning, and recommendation systems, the demand for interpretable reasoning methods continues to grow. Compared to the black-box nature of embedding-based models, some neural-symbolic reasoning approaches incorporate symbolic rules to provide clearer logical inference, which is particularly valuable in knowledge-intensive domains like biomedicine. However, these methods often lack semantic awareness when dealing with large knowledge graphs, leading to unstable semantic quality in the generated rules.
In this work, we propose SemRNNLogic, an enhanced version of the original RNNLogic architecture that incorporates semantic auxiliary tasks through a multitask learning framework. By leveraging semantic type information of entities in biomedical KGs, our model aims to improve the semantic understanding and reasoning capabilities during rule generation. Specifically, we design two auxiliary tasks at each step of rule generation: one classifies the next relation into a semantic cluster, and the other one predicts the semantic type distribution of the next entity in the grounding path, guiding the sequence generation process with semantic cues. Experimental results show that our semantic-guided multitask model improves overall link prediction performance on the SemMedDB dataset. In particular, it achieves better scores than the original model on top-ranked metrics such as MRR, Hit@1, and Hit@3, demonstrating that semantic auxiliary tasks effectively enhance rule learning accuracy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:07:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:07:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Table of Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 4 1.3 Research Objective 6 Chapter 2 Literature Review 8 2.1 Knowledge Graph Reasoning (KGR) 8 2.1.1 Neural-based Reasoning 8 2.1.2 Symbolic-based Reasoning 11 2.1.3 Neural-symbolic Reasoning 12 2.2 Multitask Learning for Link Prediction 16 2.3 Research Gaps 16 Chapter 3 Methodology 17 3.1 Preliminaries and Problem Definition 17 3.1.1 Preliminaries 17 3.1.2 Problem Definition 18 3.2 Architecture of Our Proposed Model: SemRNNLogic 20 3.2.1 Semantic-Guided Rule Generator 23 3.2.2 Reasoning Predictor 41 3.2.3 The Optimization Method – EM (Expectation-Maximization) Algorithm 42 Chapter 4 Experiment 44 4.1 Dataset 44 4.1.1 Dataset Overview 44 4.1.2 Data Preprocessing 45 4.2 Experiment Settings 48 4.3 Evaluation Metrics 49 4.4 Experiment Results 51 4.4.1 Choosing k for Relation Clustering in SemRNNLogic 51 4.4.2 Relation Clustering Result Analysis 52 4.4.3 Experiment Results 55 4.4.4 Analysis of Key Factors in Our Proposed SemRNNLogic 56 Chapter 5 Conclusion 63 5.1 Conclusion 63 5.2 Future Works 65 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | 知識圖譜推理 | zh_TW |
| dc.subject | 規則學習 | zh_TW |
| dc.subject | 多任務學習 | zh_TW |
| dc.subject | 語義引導 | zh_TW |
| dc.subject | 神經符號推理 | zh_TW |
| dc.subject | 知識圖譜補全 | zh_TW |
| dc.subject | Multitask Learning | en |
| dc.subject | Knowledge Graph Reasoning | en |
| dc.subject | Knowledge Graph Completion | en |
| dc.subject | Neural-Symbolic Reasoning | en |
| dc.subject | Semantic Guidance | en |
| dc.subject | Rule Learning | en |
| dc.title | 用於知識圖譜推理的語義導向規則學習 | zh_TW |
| dc.title | Semantic-Guided Rule Learning for Knowledge Graph Reasoning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 向倩儀;楊錦生 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Yi Hsiang;Chin-Sheng Yang | en |
| dc.subject.keyword | 知識圖譜推理,規則學習,多任務學習,語義引導,神經符號推理,知識圖譜補全, | zh_TW |
| dc.subject.keyword | Knowledge Graph Reasoning,Rule Learning,Multitask Learning,Semantic Guidance,Neural-Symbolic Reasoning,Knowledge Graph Completion, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202503986 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
