Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒zh_TW
dc.contributor.advisorChih-Hsuan Chenen
dc.contributor.author陳柏瑞zh_TW
dc.contributor.authorPO-JUI Chenen
dc.date.accessioned2025-08-19T16:06:22Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation[1] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press1999.
[2] S. Zhao, Q. Liang, C. Liang, D. Wang, Y. Ji, Y. Wang, Y. Zheng, X. Ding, M. Mills, X. Ren, Quasi‐linear superelasticity with ultralow modulus in tensile cyclic deformed TiNi strain glass, Advanced Engineering Materials 24(9) (2022) 2200239.
[3] L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys, Journal of Metallurgy 2011(1) (2011) 501483.
[4] T.W. Duerig, K. Melton, D. Stöckel, Engineering aspects of shape memory alloys, Butterworth-heinemann2013.
[5] C. Bil, K. Massey, E.J. Abdullah, Wing morphing control with shape memory alloy actuators, Journal of Intelligent Material Systems and Structures 24(7) (2013) 879-898.
[6] R. Noebe, T. Biles, S. Padula, NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications, MATERIALS ENGINEERING-NEW YORK- 32 (2006) 145.
[7] L. Le Blanc, I: Smart metals provinding actuation, sealing, and completion functions downhole, Offshore (Conroe, Tex.) 61(12) (2001) 58-68.
[8] R.A. Russell, R.B. Gorbet, Improving the response of SMA actuators, Proceedings of 1995 IEEE international conference on robotics and automation, IEEE, 1995, pp. 2299-2304.
[9] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273 (1999) 134-148.
[10] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: a review, Materials & Design 33 (2012) 577-640.
[11] S. Leu, Y. Chen, R. Jean, Effect of rapid solidification on mechanical properties of Cu-Al-Ni shape memory alloys, Journal of materials science 27 (1992) 2792-2798.
[12] L.-M. Wu, S.-K. Wu, The evolution of Ti2Ni precipitates in annealed Ti51Ni49 shape memory melt-spun ribbons, Philosophical magazine letters 90(4) (2010) 261-268.
[13] S. Chang, S. Wu, L. Wu, Shape memory characteristics of as-spun and annealed Ti51Ni49 crystalline ribbons, Intermetallics 18(5) (2010) 965-971.
[14] P. Olier, J. Brachet, J. Bechade, C. Foucher, G. Guenin, Investigation of transformation temperatures, microstructure and shape memory properties of NiTi, NiTiZr and NiTiHf alloys, Journal de Physique IV 5(C8) (1995) C8-741-C8-746.
[15] G. Firstov, J. Van Humbeeck, Y.N. Koval, High temperature shape memory alloys problems and prospects, Journal of intelligent material systems and structures 17(12) (2006) 1041-1047.
[16] G. Firstov, J. Van Humbeeck, Y.N. Koval, Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys, Scripta Materialia 50(2) (2004) 243-248.
[17] S. Besseghini, E. Villa, A. Tuissi, Ni Ti Hf shape memory alloy: effect of aging and thermal cycling, Materials Science and Engineering: A 273 (1999) 390-394.
[18] D. Angst, P. Thoma, M. Kao, The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys, Journal de physique IV 5(C8) (1995) C8-747-C8-752.
[19] I.D.N. AbuJudom, P.E. Thoma, M.-Y. Kao, D.R. Angst, High transformation temperature shape memory alloy, Google Patents, 1992.
[20] Y. Shu, K. Bhattacharya, The influence of texture on the shape-memory effect in polycrystals, Acta Materialia 46(15) (1998) 5457-5473.
[21] Y.-W. Kim, T.-H. Nam, The effect of the melt spinning processing parameters on the martensitic transformation in Ti50–Ni35–Cu15 shape memory alloys, Scripta materialia 51(7) (2004) 653-657.
[22] A. Ölander, An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society 54(10) (1932) 3819-3833.
[23] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2 (1997) 1-21.
[24] R. Hehemann, G. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi, Scripta Metallurgica 5(9) (1971) 801-805.
[25] T. Maruyama, H. Kubo, Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, Shape memory and superelastic alloys, Elsevier2011, pp. 141-159.
[26] M. Izadi, E. Ghafoori, M. Shahverdi, M. Motavalli, S. Maalek, Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates, Engineering Structures 174 (2018) 433-446.
[27] A. Sato, H. Kubo, T. Maruyama, Mechanical properties of Fe–Mn–Si based SMA and the application, Materials transactions 47(3) (2006) 571-579.
[28] W. Huang, On the selection of shape memory alloys for actuators, Materials & design 23(1) (2002) 11-19.
[29] R. Dasgupta, A look into Cu-based shape memory alloys: Present scenario and future prospects, Journal of Materials Research 29(16) (2014) 1681-1698.
[30] T. Gustmann, J. Dos Santos, P. Gargarella, U. Kühn, J. Van Humbeeck, S. Pauly, Properties of Cu-based shape-memory alloys prepared by selective laser melting, Shape Memory and Superelasticity 3 (2017) 24-36.
[31] E. Mazzer, M. Da Silva, P. Gargarella, Revisiting Cu-based shape memory alloys: Recent developments and new perspectives, Journal of Materials Research 37(1) (2022) 162-182.
[32] R. Wasilewski, S. Butler, J. Hanlon, D. Worden, Homogeneity range and the martensitic transformation in TiNi, Metallurgical Transactions 2 (1971) 229-238.
[33] K. Otsuka, T. Sawamura, K. Shimizu, C. Wayman, Characteristics of the martensitic transformation in TiNi and the memory effect, Metallurgical Transactions 2 (1971) 2583-2588.
[34] D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221(4) (2007) 535-552.
[35] G. Costanza, M.E. Tata, Shape memory alloys for aerospace, recent developments, and new applications: A short review, Materials 13(8) (2020) 1856.
[36] M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A review of shape memory alloy actuators in robotics, RoboCup 2010: Robot Soccer World Cup XIV 14 (2011) 206-217.
[37] G.V. Webb, D.C. Lagoudas, A.J. Kurdila, Hysteresis modeling of SMA actuators for control applications, Journal of intelligent material systems and structures 9(6) (1998) 432-448.
[38] D. Mantovani, Shape memory alloys: Properties and biomedical applications, Jom 52 (2000) 36-44.
[39] G. Bartkowiak, A. Dąbrowska, A. Greszta, Development of smart textile materials with shape memory alloys for application in protective clothing, Materials 13(3) (2020) 689.
[40] N. Ma, Y. Lu, J. He, H. Dai, Application of shape memory materials in protective clothing: a review, The Journal of The Textile Institute 110(6) (2019) 950-958.
[41] K.K. Alaneme, E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems, Engineering Science and Technology, an International Journal 19(3) (2016) 1582-1592.
[42] H. Kessler, W. Pitsch, On the nature of the martensite to austenite reverse transformation, Acta Metallurgica 15(2) (1967) 401-405.
[43] K. Otsuka, K. Shimizu, On the crystallographic reversibility of martensitic transformations, Scripta Metallurgica 11(9) (1977) 757-760.
[44] R.D. James, K.F. Hane, Martensitic transformations and shape-memory materials, Acta materialia 48(1) (2000) 197-222.
[45] Z. Pei, M. Eisenbach, S. Mu, G.M. Stocks, Error controlling of the combined Cluster-Expansion and Wang–Landau Monte-Carlo method and its application to FeCo, Computer Physics Communications 235 (2019) 95-101.
[46] C. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56.
[47] O.E. Ozbulut, S. Hurlebaus, R. DesRoches, Seismic response control using shape memory alloys: a review, Journal of intelligent material systems and structures 22(14) (2011) 1531-1549.
[48] M. Nishida, T. Honma, All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging, Scripta metallurgica 18(11) (1984) 1293-1298.
[49] Y. Liu, Y. Liu, J. Van Humbeeck, Two-way shape memory effect developed by martensite deformation in NiTi, Acta materialia 47(1) (1998) 199-209.
[50] H. Sehitoglu, R. Hamilton, D. Canadinc, X. Zhang, K. Gall, I. Karaman, Y. Chumlyakov, H. Maier, Detwinning in NiTi alloys, Metallurgical and Materials Transactions A 34 (2003) 5-13.
[51] T. Schroeder, C. Wayman, Pseudoelastic effects in Cu Zn single crystals, Acta Metallurgica 27(3) (1979) 405-417.
[52] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy, Scripta Metallurgica 15(3) (1981) 287-292.
[53] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678.
[54] C. Jackson, H. Wagner, R. Wasilewski, The alloy with a memory, 55-Nitinol: its physical metallurgy, properties, and applications, NASA, 1972.
[55] S. Pfeiffer, M.F.-X. Wagner, Elastic deformation of twinned microstructures, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2204) (2017) 20170330.
[56] T. Tadaki, C. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part II. Morphology and crystal structure of martensites, Metallography 15(3) (1982) 247-258.
[57] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.-X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Materialia 58(9) (2010) 3444-3458.
[58] T.H. Nam, T. Saburi, Y. Nakata, K.i. Shimizu, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(12) (1990) 1050-1056.
[59] P. Potapov, S. Kulkoval, A. Shelyakov, K. Okutsu, S. Miyazaki, D. Schryvers, Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics, Journal de Physique IV (Proceedings), EDP sciences, 2003, pp. 727-730.
[60] T.H. Nam, T. Saburi, K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(11) (1990) 959-967.
[61] K. Senkevich, D. Gusev, Effect of Heat Treatment on the Mechanical Behavior and Fracture of TiNi Alloy, Physical Mesomechanics 22 (2019) 224-229.
[62] E. Alarcon, L. Heller, S.A. Chirani, P. Šittner, J. Kopeček, L. Saint-Sulpice, S. Calloch, Fatigue performance of superelastic NiTi near stress-induced martensitic transformation, International Journal of Fatigue 95 (2017) 76-89.
[63] O. Mercier, K. Melton, Y. De Préville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metallurgica 27(9) (1979) 1467-1475.
[64] H.C. Ling, K. Roy, Stress-induced shape changes and shape memory in the R and martensite transformations in equiatomic NiTi, Metallurgical Transactions A 12 (1981) 2101-2111.
[65] H.C. Ling, R. Kaplow, Phase transitions and shape memory in NiTi, Metallurgical and Materials Transactions A 11 (1980) 77-83.
[66] T. Redeker, A. Bacher, C. Arcos, H. Kaesz, K. Stovall, Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi), ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 1998, pp. U188-U188.
[67] J. Hanlon, S. Butler, R. Wasilewski, Effect of martensitic transformation on the electrical and magnetic properties of NiTi, AIME MET SOC TRANS 239(9) (1967) 1323-1326.
[68] C.-M. Hwang, M. Meichle, M. Salamon, C. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase, Philosophical Magazine A 47(1) (1983) 9-30.
[69] M. Nishida, C. Wayman, A. Chiba, Electron microscopy studies of the martensitic transformation in an aged Ti-51at% Ni shape memory alloy, Metallography 21(3) (1988) 275-291.
[70] G. Airoldi, G. Bellini, C. Di Francesco, Transformation cycling in NiTi alloys, Journal of Physics F: Metal Physics 14(8) (1984) 1983.
[71] A. Lotkov, V. Grishkov, A. Kuznetsov, S. Kulkov, TiNi aging and its effect on the start temperature of the martensitic transformation, physica status solidi (a) 75(2) (1983) 373-377.
[72] L. Bataillard, J.-E. Bidaux, R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations, Philosophical magazine A 78(2) (1998) 327-344.
[73] L. Bataillard, R. Gotthardt, Influence of thermal treatment on the appearance of a three step martensitic transformation in NiTi, Journal de Physique IV 5(C8) (1995) C8-647-C8-652.
[74] J.K. Allafi, X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta materialia 50(4) (2002) 793-803.
[75] M. Carroll, C. Somsen, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi shape memory alloys, Scripta Materialia 50(2) (2004) 187-192.
[76] D. Song, C. Yu, C. Zhang, G. Kang, Superelasticity degradation of NiTi shape memory alloy in wide ranges of temperature and loading level: Experimental observation and micromechanical constitutive model, International Journal of Plasticity 161 (2023) 103487.
[77] K. Chu, Q. Sun, Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation, Scripta Materialia 201 (2021) 113958.
[78] Q. Kan, B. Qiu, X. Zhang, C. Yu, G. Kang, Thermo-mechanically coupled functional fatigue of NiTi shape memory alloys under multiaxial cyclic loadings, International Journal of Fatigue 172 (2023) 107657.
[79] T. Ezaz, J. Wang, H. Sehitoglu, H. Maier, Plastic deformation of NiTi shape memory alloys, Acta Materialia 61(1) (2013) 67-78.
[80] P. Chowdhury, H. Sehitoglu, A revisit to atomistic rationale for slip in shape memory alloys, Progress in Materials Science 85 (2017) 1-42.
[81] Z. Zhao, Y. Xiao, J. Lin, J. Min, The roles of residual martensite and plastic deformation in thermomechanically coupled functional degradation of nanocrystalline superelastic NiTi alloys, Journal of Materials Research and Technology 24 (2023) 6791-6807.
[82] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, N. Min, T. Fukuda, Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement, Scripta Materialia 162 (2019) 230-234.
[83] P. Wei, P. Hua, M. Xia, K. Yan, H. Lin, S. Yi, J. Lu, F. Ren, Q. Sun, Bending fatigue life enhancement of NiTi alloy by pre-strain warm surface mechanical attrition treatment, Acta Materialia 240 (2022) 118269.
[84] P. Dang, J. Pang, Y. Zhou, L. Ding, L. Zhang, X. Ding, T. Lookman, J. Sun, D. Xue, Improved stability of superelasticity and elastocaloric effect in Ti-Ni alloys by suppressing Lüders-like deformation under tensile load, Journal of Materials Science & Technology 146 (2023) 154-167.
[85] P. Hua, M. Xia, Y. Onuki, Q. Sun, Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance, Nature Nanotechnology 16(4) (2021) 409-413.
[86] K. Huang, H. Yin, M. Li, Q. Sun, Grain size dependence of stress-assisted two-way memory effect in Ti-50.04 at.% Ni shape memory alloy, Materials Science and Engineering: A 856 (2022) 143872.
[87] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, International Journal of Fatigue 88 (2016) 166-177.
[88] H. Lu, H. Ma, W. Cai, X. Luo, Z. Wang, C. Song, S. Yin, C. Yang, Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50. 4Ti49. 6 shape memory alloy fabricated via selective laser melting, Acta Materialia 219 (2021) 117261.
[89] S. Liu, J. Zhu, X. Lin, X. Wang, G. Wang, Coupling effect of stretch-bending deformation and electric pulse treatment on phase transformation behavior and superelasticity of a Ti-50.8 at.% Ni alloy, Materials Science and Engineering: A 799 (2021) 140164.
[90] F. Xiao, K. Chu, Z. Li, R. Hou, Y. Gao, Q. Sun, X. Jin, Improved functional fatigue resistance of single crystalline NiTi micropillars with uniformly oriented Ti3Ni4 precipitates, International Journal of Plasticity 160 (2023) 103480.
[91] H. Yu, Y. Qiu, M.L. Young, Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate, Materials Science and Engineering: A 804 (2021) 140753.
[92] S. Liu, Y. Lin, G. Wang, X. Wang, Effect of varisized Ni4Ti3 precipitate on the phase transformation behavior and functional stability of Ti-50.8 at.% Ni alloys, Materials Characterization 172 (2021) 110832.
[93] E. Ryklina, K. Polyakova, N.Y. Tabachkova, N. Resnina, S. Prokoshkin, Effect of B2 austenite grain size and aging time on microstructure and transformation behavior of thermomechanically treated titanium nickelide, Journal of Alloys and Compounds 764 (2018) 626-638.
[94] X. Wang, Z. Pu, Q. Yang, S. Huang, Z. Wang, S. Kustov, J. Van Humbeeck, Improved functional stability of a coarse-grained Ti-50.8 at.% Ni shape memory alloy achieved by precipitation on dislocation networks, Scripta Materialia 163 (2019) 57-61.
[95] S. Kajiwara, Strengthening of Ti-Ni shape-memory films by coherent subnanometric plate precipitates, Philosophical Magazine Letters 74(3) (1996) 137-144.
[96] S. Kajiwara, K. Ogawa, T. Kikuchi, T. Matsunaga, S. Miyazaki, Formation of nanocrystals with an identical orientation in sputter-deposited Ti Ni thin films, Philosophical magazine letters 74(6) (1996) 395-404.
[97] J. Zhang, M. Sato, A. Ishida, On the Ti2Ni precipitates and Guinier–Preston zones in Ti-rich Ti–Ni thin films, Acta materialia 51(11) (2003) 3121-3130.
[98] J. Zhang, M. Sato, A. Ishida, Structure of martensite in sputter-deposited Ti–Ni thin films containing Guinier–Preston zones, Acta materialia 49(15) (2001) 3001-3010.
[99] Y. Song, M. Jin, X. Han, X. Wang, P. Chen, X. Jin, Microstructural origin of ultrahigh damping capacity in Ni50. 8Ti49. 2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging, Acta Materialia 205 (2021) 116541.
[100] M. Jin, Y. Song, X. Wang, P. Chen, G. Pang, X. Jin, Ultrahigh damping capacity achieved by modulating R phase in Ti49. 2Ni50. 8 shape memory alloy wires, Scripta Materialia 183 (2020) 102-106.
[101] A. Shamimi, B. Amin-Ahmadi, A. Stebner, T. Duerig, The effect of low temperature aging and the evolution of R-phase in Ni-rich NiTi, Shape Memory and Superelasticity 4 (2018) 417-427.
[102] X. Huo, P. Chen, S. Lahkar, M. Jin, X. Han, Y. Song, X. Wang, Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50. 9Ti49. 1 alloy, Acta Materialia 227 (2022) 117688.
[103] Z. Zhao, J. Lin, Y. Xiao, J. Min, Improved superelastic stability by nanosegregation via low-temperature aging in Ti-50.9 at.% Ni shape memory alloy, Scripta Materialia 245 (2024) 116050.
[104] A. Ishida, K. Ogawa, M. Sato, S. Miyazaki, Microstructure of Ti-48.2 at. pct Ni shape memory thin films, Metallurgical and Materials Transactions A 28 (1997) 1985-1991.
[105] A. Ishida, M. Sato, A. Takei, Y. Kase, S. Miyazaki, Effect of heat treatment on shape memory behavior of Ti-Ni thin films, Journal de Physique IV 5(C8) (1995) C8-701-C8-705.
[106] T. Duerig, A. Pelton, C. Trepanier, Nitinol: The Book, Part 1, Mechanisms and Behavior.
[107] S. Cai, J. Schaffer, T. Shi, J. Gao, L. Kadeřávek, Effect of Cu Alloying and Heat Treatment Parameters on NiTi Alloy Phase Stability and Constitutive Behavior, Shape Memory and Superelasticity (2024) 1-13.
[108] G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, K. Otsuka, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys, Acta Materialia 52(14) (2004) 4351-4362.
[109] S. Miyazaki, S. Kimura, K. Otsuka, Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50· 5 at.% Ni single crystals, Philosophical Magazine A 57(3) (1988) 467-478.
[110] L.-M. Wu, S.-H. Chang, S.-K. Wu, Precipitate-induced R-phase in martensitic transformation of as-spun and annealed Ti51Ni49 ribbons, Journal of Alloys and Compounds 505(1) (2010) 76-80.
[111] H. Karaca, E. Acar, H. Tobe, S. Saghaian, NiTiHf-based shape memory alloys, Materials Science and Technology 30(13) (2014) 1530-1544.
[112] X. Yi, X. Meng, W. Cai, L. Zhao, Multi-stage martensitic transformation behaviors and microstructural characteristics of Ti-Ni-Hf high temperature shape memory alloy powders, Journal of Alloys and Compounds 781 (2019) 644-656.
[113] H. Karaca, S. Saghaian, G. Ded, H. Tobe, B. Basaran, H. Maier, R. Noebe, Y. Chumlyakov, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy, Acta Materialia 61(19) (2013) 7422-7431.
[114] X. Meng, W. Cai, K. Lau, L.-C. Zhao, L.M. Zhou, Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys, Intermetallics 13(2) (2005) 197-201.
[115] P. Potapov, A. Shelyakov, A. Gulyaev, E. Svistunov, N. Matveeva, D. Hodgson, Effect of Hf on the structure of Ni-Ti martensitic alloys, Materials Letters 32(4) (1997) 247-250.
[116] A. Simon, Intermetallic compounds and the use of atomic radii in their description, Angewandte Chemie International Edition in English 22(2) (1983) 95-113.
[117] R.W. Cahn, Lattice parameter changes on disordering intermetallics, Intermetallics 7(10) (1999) 1089-1094.
[118] S. Han, W. Zou, S. Jin, Z. Zhang, D. Yang, The studies of the martensite transformations in ATI36.5NI48.5HF15 alloy, Scripta Metallurgica et Materiala 32(9) (1995) 1441-1446.
[119] Y. Zheng, W. Cai, J. Zhang, Y. Wang, L. Zhao, H. Ye, High-resolution electron microscopy study on the substructure of Ti–Ni–Hf B19′ Martensite, Materials Letters 36(1-4) (1998) 142-147.
[120] Q. Wei, X. Han, Z. Zhang, The substructures of martensite in a TiNiHf10 high temperature shape memory alloy, Materials Letters 60(25-26) (2006) 3054-3058.
[121] Y. Zheng, L. Zhao, H. Ye, HREM study on the intervariant structure of Ti-Ni-Hf B19′ martensite, Scripta materialia 38(8) (1998) 1249-1253.
[122] D. König, R. Zarnetta, A. Savan, H. Brunken, A. Ludwig, Phase transformation, structural and functional fatigue properties of Ti–Ni–Hf shape memory thin films, Acta Materialia 59(8) (2011) 3267-3275.
[123] F. Stein, A. Leineweber, Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties, Journal of Materials Science 56(9) (2021) 5321-5427.
[124] P.E. Thoma, J.J. Boehm, Effect of composition on the amount of second phase and transformation temperatures of NixTi90− xHf10 shape memory alloys, Materials Science and Engineering: A 273 (1999) 385-389.
[125] F. Dalle, G. Despert, P. Vermaut, R. Portier, A. Dezellus, P. Plaindoux, P. Ochin, Ni49. 8Ti42. 2Hf8 shape memory alloy strips production by the twin roll casting technique, Materials Science and Engineering: A 346(1-2) (2003) 320-327.
[126] X. Meng, W. Cai, Y. Fu, J. Zhang, L. Zhao, Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti, Hf) 2Ni precipitates, Acta Materialia 58(10) (2010) 3751-3763.
[127] X. Meng, W. Cai, Y.-F. Zheng, L.-C. Zhao, Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys, Materials Science and Engineering: A 438 (2006) 666-670.
[128] X. Meng, W. Cai, F. Chen, L. Zhao, Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy, Scripta materialia 54(9) (2006) 1599-1604.
[129] Y.-T. Chang, M.-H. Lee, M.-W. Chu, C.-H. Chen, Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions, Materials Today Advances 14 (2022) 100223.
[130] F. Yang, D. Coughlin, P.J. Phillips, L. Yang, A. Devaraj, L. Kovarik, R.D. Noebe, M. Mills, Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy, Acta Materialia 61(9) (2013) 3335-3346.
[131] R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H. Karaca, R. Noebe, TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys, Acta Materialia 61(16) (2013) 6191-6206.
[132] S. Saghaian, H. Karaca, H. Tobe, J. Pons, R. Santamarta, Y. Chumlyakov, R. Noebe, Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys, Smart Materials and Structures 25(9) (2016) 095029.
[133] S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G.S. Bigelow, R.D. Noebe, G.B. Thompson, Influence of H-phase precipitation on the microstructure and functional and mechanical properties in a Ni-rich NiTiZr shape memory alloy, Materials Science and Engineering: A 801 (2021) 140401.
[134] S. Saghaian, H. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S. Saghaian, Y. Chumlyakov, R. Noebe, High strength NiTiHf shape memory alloys with tailorable properties, Acta Materialia 134 (2017) 211-220.
[135] X. Meng, W. Cai, Y. Zheng, Y. Tong, L. Zhao, L.M. Zhou, Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy, Materials Letters 55(1-2) (2002) 111-115.
[136] X. Meng, W. Cai, L. Wang, Y. Zheng, L. Zhao, L.M. Zhou, Microstructure of stress-induced martensite in a Ti–Ni–Hf high temperature shape memory alloy, Scripta materialia 45(10) (2001) 1177-1182.
[137] K. Gupta, The Hf-Ni-Ti (hafnium-nickel-titanium) system, Journal of phase equilibria 22(1) (2001) 69-72.
[138] Y. Wang, Y. Zheng, W. Cai, L. Zhao, The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy, Scripta Materialia 40(12) (1999) 1327-1331.
[139] M. Zarinejad, Y. Liu, T.J. White, The crystal chemistry of martensite in NiTiHf shape memory alloys, Intermetallics 16(7) (2008) 876-883.
[140] X. Yi, K. Sun, W. Gao, X. Meng, W. Cai, L. Zhao, Microstructure design of the excellent shape recovery properties in (Ti, Hf) 2Ni/Ti-Ni-Hf high temperature shape memory alloy composite, Journal of Alloys and Compounds 729 (2017) 758-763.
[141] B. Kockar, I. Karaman, J. Kim, Y. Chumlyakov, A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys, Scripta materialia 54(12) (2006) 2203-2208.
[142] R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification, Acta metallurgica et materialia 42(3) (1994) 947-958.
[143] H.Y. Xing, H.Y. Kim, S. Miyazaki, Effect of rotation speed on transformation behavior in Ti-48at% Ni shape memory alloy melt-spun ribbon, Materials Science Forum, Trans Tech Publ, 2007, pp. 1481-1484.
[144] H.-y. Xing, H. Kim, S. Miyazaki, Microstructures of Ti-48% Ni shape memory melt-spun ribbons, Transactions of Nonferrous Metals Society of China 16 (2006) s92-s95.
[145] B. López-Walle, E. López-Cuellar, E. Reyes-Melo, O. Lomas-González, W.B. De Castro, A smart polymer composite based on a NiTi ribbon and a magnetic hybrid material for actuators with multiphysic transduction, Actuators, MDPI, 2015, pp. 301-313.
[146] S. Hirosawa, Processing and Properties of Nanocomposite Nd 2 Fe 14 B-Based Permanent Magnets, Handbook of Advanced Magnetic Materials (2006) 1064-1090.
[147] R. Budhani, T. Goel, K. Chopra, Melt-spinning technique for preparation of metallic glasses, Bulletin of Materials Science 4 (1982) 549-561.
[148] P. Donner, S. Eucken, The shape memory effect in meltspun ribbons, Materials Science Forum, Trans Tech Publ, 1990, pp. 723-728.
[149] S. Semenovskaya, A. Khachaturyan, Structural transformations in nonstoichiometric YBa 2 Cu 3 O 6+ δ, Physical Review B 46(10) (1992) 6511.
[150] S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti 50-x Ni 50+ x, Physical review letters 95(20) (2005) 205702.
[151] X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass, Philosophical Magazine 90(1-4) (2010) 141-157.
[152] X. Ren, Strain glass and ferroic glass–Unusual properties from glassy nano‐domains, physica status solidi (b) 251(10) (2014) 1982-1992.
[153] Y. Ji, D. Wang, Y. Wang, Y. Zhou, D. Xue, K. Otsuka, Y. Wang, X. Ren, Ferroic glasses, npj Computational Materials 3(1) (2017) 43.
[154] Y. Ji, S. Ren, D. Wang, Y. Wang, X. Ren, Strain glasses, Frustrated materials and ferroic glasses (2018) 183-203.
[155] Q. Liang, D. Wang, J. Zhang, Y. Ji, X. Ding, Y. Wang, X. Ren, Y. Wang, Novel B19′ strain glass with large recoverable strain, Physical Review Materials 1(3) (2017) 033608.
[156] X. Ren, Strain glass and strain glass transition, Disorder and strain-induced complexity in functional materials, Springer2011, pp. 201-225.
[157] A.G. Khachaturyan, Theory of structural transformations in solids, Courier Corporation2013.
[158] D. Wang, Y. Ji, X. Ren, Y. Wang, Strain glass state, strain glass transition, and controlled strain release, Annual Review of Materials Research 52(1) (2022) 159-187.
[159] Y. Zhou, D. Xue, X. Ding, K. Otsuka, J. Sun, X. Ren, High temperature strain glass in Ti50 (Pd50− xCrx) alloy and the associated shape memory effect and superelasticity, Applied Physics Letters 95(15) (2009).
[160] Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy, Physical review letters 97(22) (2006) 225703.
[161] Y. Wang, X. Ren, K. Otsuka, A. Saxena, Temperature–stress phase diagram of strain glass Ti48. 5Ni51. 5, Acta materialia 56(12) (2008) 2885-2896.
[162] Z. Zhou, J. Cui, X. Ren, Strain glass state as the boundary of two phase transitions, Scientific Reports 5(1) (2015) 13377.
[163] D. Wang, Z. Zhang, J. Zhang, Y. Zhou, Y. Wang, X. Ding, Y. Wang, X. Ren, Strain glass in Fe-doped Ti–Ni, Acta materialia 58(18) (2010) 6206-6215.
[164] Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka, X. Ren, Phase diagram of Ti 50− x Ni 50+ x: Crossover from martensite to strain glass, Physical Review B—Condensed Matter and Materials Physics 81(22) (2010) 224102.
[165] S. Xu, J. Pons, R. Santamarta, I. Karaman, O. Benafan, R. Noebe, Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys, Acta Materialia 218 (2021) 117232.
[166] S. Ren, C. Zhou, D. Xue, D. Wang, J. Zhang, X. Ding, K. Otsuka, X. Ren, Sandwichlike strain glass phase diagram of Ti 49 Ni 51− x Pd x, Physical Review B 94(21) (2016) 214112.
[167] L. Li, Z. Yang, K. Xu, D. Cui, L. Wang, Z. Wang, J. Li, J. Wang, F. He, Strain glass state in Ni50. 3Ti29. 7Hf20 high-temperature shape memory alloy, Scripta Materialia 257 (2025) 116449.
[168] Y. Hao, Y. Ji, Z. Zhang, M. Yin, C. Liu, H. Zhao, K. Otsuka, X. Ren, Strain glass in Ti50− xNi35+ xCu15 shape memory alloys, Scripta Materialia 168 (2019) 71-75.
[169] Y. Zhou, D. Xue, X. Ding, Y. Wang, J. Zhang, Z. Zhang, D. Wang, K. Otsuka, J. Sun, X. Ren, Strain glass in doped Ti50 (Ni50− xDx)(D= Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems, Acta Materialia 58(16) (2010) 5433-5442.
[170] Y. Zhou, D. Xue, Y. Tian, X. Ding, S. Guo, K. Otsuka, J. Sun, X. Ren, Direct evidence for local symmetry breaking during a strain glass transition, Physical review letters 112(2) (2014) 025701.
[171] S. Ren, C. Liu, X. Chen, Y. Hao, X. Ren, Strain glass by aging in Ti–Pd–Fe shape memory alloys, Scripta Materialia 177 (2020) 11-16.
[172] Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, X. Ren, Y. Wang, X. Song, J. Gao, Strain glass transition in a multifunctional β-type Ti alloy, Scientific reports 4(1) (2014) 3995.
[173] S. Ren, C. Liu, W.-H. Wang, High temperature strain glass in Ti–Au and Ti–Pt based shape memory alloys, Chinese Physics B 30(1) (2021) 018101.
[174] X. Sun, D. Cong, Y. Ren, K.-D. Liss, D.E. Brown, Z. Ma, S. Hao, W. Xia, Z. Chen, L. Ma, Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy, Acta Materialia 183 (2020) 11-23.
[175] D. Wang, X. Chen, Z. Nie, N. Li, Z. Wang, Y. Ren, Y. Wang, Transition in superelasticity for Ni55− xCoxFe18Ga27 alloys due to strain glass transition, Europhysics Letters 98(4) (2012) 46004.
[176] R. Nevgi, K. Priolkar, M. Acet, Strain glass versus antisite disorder induced ferromagnetic state in Fe doped Ni–Mn–In Heusler martensites, Journal of Physics D: Applied Physics 54(18) (2021) 185002.
[177] J. Zhang, D. Xue, X. Cai, X. Ding, X. Ren, J. Sun, Dislocation induced strain glass in Ti50Ni45Fe5 alloy, Acta Materialia 120 (2016) 130-137.
[178] R.W. Wheeler, J. Smith, N.A. Ley, A. Giri, M.L. Young, Shape Memory Behavior of Ni 49.5 Ti 50.5 Processing-Induced Strain Glass Alloys, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, Springer, 2019, pp. 1411-1420.
[179] Y. Ji, X. Ding, T. Lookman, K. Otsuka, X. Ren, Heterogeneities and strain glass behavior: role of nanoscale precipitates in low-temperature-aged Ti 48.7 Ni 51.3 alloys, Physical Review B—Condensed Matter and Materials Physics 87(10) (2013) 104110.
[180] 邱博暘, Ti50Ni44Cu5Al1 形狀記憶合金箔帶之製備與性能研究, (2023).
[181] S.K. Nagaraj, S. Shivanna, N.K. Subramani, H. Siddaramaiah, Revisiting powder X-ray diffraction technique: a powerful tool to characterize polymers and their composite films, J. Mater. Sci 4 (2016) 1-5.
[182] G. Sandrock, A. Perkins, R. Hehemann, The premartensitic instability in near-equiatomic TiNi, Metallurgical Transactions 2 (1971) 2769-2781.
[183] S. Miyazaki, Y. Igo, K. Otsuka, Effect of thermal cycling on the transformation temperatures of Ti Ni alloys, Acta metallurgica 34(10) (1986) 2045-2051.
[184] X. Wang, B. Verlinden, J. Van Humbeeck, Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys, Intermetallics 62 (2015) 43-49.
[185] T.-J. Ho, S.-K. Wu, K.-H. Lin, Two-stage martensitic transformation in thermal-cycled Ti40. 5Ni49. 5Hf10 shape memory alloy, Materials transactions 51(4) (2010) 679-684.
[186] H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. Maier, Y. Chumlyakov, Compressive response of NiTi single crystals, Acta Materialia 48(13) (2000) 3311-3326.
[187] H. Yan, B. Yang, Y. Zhang, Z. Li, C. Esling, X. Zhao, L. Zuo, Variant organization and mechanical detwinning of modulated martensite in Ni–Mn–In metamagnetic shape-memory alloys, Acta Materialia 111 (2016) 75-84.
[188] X. Shi, M. Yu, F. Guo, Z. Liu, D. Jiang, X. Han, L. Cui, Effect of deformation on the stability of stress-induced martensite in nanocrystalline NiTi shape memory alloy, Materials Letters 131 (2014) 233-235.
[189] M. Krishnan, J. Singh, A novel B19′ martensite in nickel titanium shape memory alloys, Acta materialia 48(6) (2000) 1325-1344.
[190] M. Nishida, I. Itai, K. Kitamura, A. Chiba, K. Yamauchi, Effect of grain size of parent phase on twinning modes of B19'martensite in an equiatomic Ti-Ni shape memory alloy, Journal de Physique IV 5(C8) (1995) C8-635-C8-640.
[191] S. Wang, K. Tsuchiya, L. Wang, M. Umemoto, Deformation mechanism and stabilization of martensite in TiNi shape memory alloy, Journal of Materials Science & Technology 26(10) (2010) 936-940.
[192] H. Sehitoglu, J. Jun, X. Zhang, I. Karaman, Y. Chumlyakov, H. Maier, K. Gall, Shape memory and pseudoelastic behavior of 51.5% Ni–Ti single crystals in solutionized and overaged state, Acta Materialia 49(17) (2001) 3609-3620.
[193] H. Karaca, E. Acar, G. Ded, B. Basaran, H. Tobe, R. Noebe, G. Bigelow, Y. Chumlyakov, Shape memory behavior of high strength NiTiHfPd polycrystalline alloys, Acta Materialia 61(13) (2013) 5036-5049.
[194] E. Acar, H. Karaca, H. Tobe, R. Noebe, Y. Chumlyakov, Characterization of the shape memory properties of a Ni45. 3Ti39. 7Hf10Pd5 alloy, Journal of alloys and compounds 578 (2013) 297-302.
[195] J. Zhang, M. Sato, A. Ishida, Structure of martensite in sputter-deposited Ti-Ni thin films containing homogeneously distributed Ti2Ni precipitates, Philosophical Magazine A 82(7) (2002) 1433-1449.
[196] M. Liu, M. Tu, X. Zhang, Y. Li, A. Shelyakov, Microstructure of melt-spinning high temperature shape memory Ni-Ti-Hf alloys, Journal of materials science letters 20 (2001) 827-830.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98762-
dc.description.abstract本研究主要是針對Ni50Ti45Hf5與Ni49Ti51-xHfx (x=5,10,15)系列形狀記憶合金箔帶的相變態行為、微結構與形狀記憶效應等等特性進行探討。箔帶按製程時的銅輪轉速,可以分為冷卻速率較慢的2000 RPM箔帶,以及冷卻速率較快的4000 RPM箔帶兩種。藉由光學顯微鏡與SEM檢視後,可以確認Hf徹底融入箔帶當中。其中Hf的含量與冷卻速率的快慢,會影響箔帶在As-spun狀態下的微結構與相變態行為。在2000 RPM箔帶系列中,Ni50Ti45Hf5和Ni49Ti46Hf5合金箔帶,缺陷含量最少,可以利用DSC量測到相變態發生。而在經過XRD與頻率依賴性實驗後,發現Ni49Ti41Hf10合金2000 RPM箔帶內的缺陷濃度超過臨界值,結構是由應變玻璃所組成的。Ni49Ti36Hf15合金2000 RPM箔帶則在經過XRD實驗後,發現內部結構是處於半晶質狀態。而4000 RPM箔帶系列在經過TEM實驗後,發現有大量的奈米級細晶組織存在其中,這些結構會抑制麻田散體相變態的發生。對於這些在As-spun狀態下無法量測到麻田散體相變態行為的材料,皆須要經過至少大於500°C的時效熱處理後,才能發揮出其形狀記憶合金相關的特性。相對高溫的600°C時效條件,擁有較強的消除缺陷能力,在短時間時效下可令箔帶擁有最高的相變態溫度。其同時有相對最好的析出物生成能力,在經過較長時間的時效會令相變態溫度顯著下降,並可在SEM觀察結果中清楚觀察到明顯的析出物生成。與此相對的,在經過短時間較低溫500°C時效熱處理後的箔帶,雖然會有相對較低的相變態溫度,但可以更有效利用固溶強化的效果,可在熱循環穩定性與形狀記憶效應上可以得到比600°C時效條件下更優良的結果。研究結果顯示,藉由改變箔帶的成分、製程的冷卻速率、時效熱處理的溫度大小和時間長短,能夠有效調整箔帶的微結構組成,控制其相變態溫度和行為。zh_TW
dc.description.abstractThis study investigates the phase transformation behavior, microstructure, and shape memory effect of Ni50Ti45Hf5 and Ni49Ti51−xHfx (x = 5, 10, 15) shape memory alloy (SMA) ribbons. The ribbons were categorized based on the rotational speed of copper wheel rotation during fabrication: 2000 RPM ribbons (slower cooling rate) and 4000 RPM ribbons (faster cooling rate). The complete dissolution of Hf into the ribbon matrix can be verify through optical microscopy and scanning electron microscopy (SEM) observations. The Hf content in composition and cooling rate during fabrication both significantly influence the microstructure and phase transformation behavior of as-spun ribbons. Among the 2000 RPM ribbons, the Ni50Ti45Hf5 and Ni49Ti46Hf5 alloy ribbons exhibited the lowest defect concentrations, allowing phase transformations detection via differential scanning calorimetry (DSC). X-ray diffraction (XRD) analysis and frequency-dependent experiments revealed that Ni49Ti41Hf10 alloy ribbons (2000 RPM) contained defect concentration exceeding a critical concentration, resulting in a strain glass structure. Through XRD analysis, it is determined that Ni49Ti36Hf15 alloy ribbons (2000 RPM) exhibited a semi-crystalline structure. Transmission electron microscopy (TEM) analysis of the 4000 RPM ribbons revealed that these ribbons consist predominantly of nanocrystalline structures, which inhibited martensitic phase transformations. For materials lacking detectable martensitic transformation behavior in its as-spun state, it is understood that aging heat treatment at temperatures above 500°C is necessary to manifest their shape memory alloys properties. Among the aging heat treatments, the 600°C aging condition is particularly effective at eliminating defects, achieving the highest phase transformation temperatures after short-term aging. Furthermore, this condition exhibits the most effective precipitate formation ability, which became evident through clearly observable precipitate formation in SEM after prolonged aging, which is accompanied by a marked decrease in the transformation temperature. In contrast, ribbons subjected to short-term aging at 500°C, despite exhibiting relatively lower phase transformation temperatures, are able to more effectively utilize the benefits of solid solution strengthening. These conditions provided superior thermal cycling stability and shape memory effects when compared to its higher temperature counterpart. Overall, this research demonstrates that by adjusting the ribbon composition, cooling rates during fabrication, aging temperature and duration of heat treatments, the microstructure of the ribbons can be effectively tailored, thereby enabling control over their phase transformation temperatures and behaviors.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:06:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:06:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xv
第一章 前言 1
第二章 文獻探討 3
2-1 形狀記憶合金 3
2-2 麻田散體相變態 4
2-3 形狀記憶效應 8
2-4 超彈性 10
2-5 NiTi基形狀記憶合金 13
2-5-1 NiTiHf形狀記憶合金 20
2-6 快速凝固製程 32
2-7 應變玻璃 37
第三章 實驗方法 43
3-1 預合金製備 44
3-1-1 原料酸洗 44
3-1-2 材料配重 44
3-1-3 真空電弧熔煉 45
3-1-4 均質化處理 46
3-1-5 材料切割 47
3-2 Melt-spinning製程 47
3-2-1 石英管製備 47
3-2-2 Melt-spinning 48
3-3 箔帶熱處理 50
3-4 相變態行為量測 50
3-5 微結構與成分觀察 52
3-5-1 光學顯微鏡 52
3-5-2 掃描式電子顯微鏡 52
3-5-3 電子探針微量分析器 53
3-6 晶體結構分析 53
3-6-1 X光繞射分析儀 53
3-6-2 穿透式電子顯微鏡 55
3-7 形狀記憶效應量測 55
3-8 應變玻璃特性量測 58
第四章 實驗結果與討論 59
4-1 材料細節 59
4-2 時效熱處理與相變態行為 63
4-2-1 塊材與箔帶的相變態行為 63
4-2-2 時效溫度與時間的相變態行為 68
4-2-3 熱循環穩定性 84
4-3 微結構觀察 99
4-3-1 XRD觀察結果 99
4-3-2 光學顯微鏡與SEM觀察結果 106
4-4 機械性質探討 122
4-4-1 形狀記憶效應 122
4-4-2 頻率依賴性量測 134
4-5 TEM觀察結果 137
4-5-1 Ni49Ti46Hf5箔帶觀察結果 137
4-5-2 Ni49Ti41Hf10箔帶觀察結果 141
4-5-3 Ni49Ti36Hf15箔帶觀察結果 149
第五章 結論 155
參考文獻 159
-
dc.language.isozh_TW-
dc.subject形狀記憶合金箔帶zh_TW
dc.subject麻田散體相變態zh_TW
dc.subject快速凝固製程zh_TW
dc.subjectNiTiHf系列合金zh_TW
dc.subject形狀記憶效應zh_TW
dc.subjectMartensite transformationen
dc.subjectShape memory effectsen
dc.subjectNiTiHf Shape Memory Alloyen
dc.subjectRapid Solidification Processen
dc.subjectShape memory alloy ribbonsen
dc.titleNi50Ti45Hf5與Ni49Ti51-xHfx (x=5,10,15)系列形狀記憶合金箔帶的相變態行為與機械性能之研究zh_TW
dc.titleResearch on Phase Transformation Behavior and Mechanical Properties of Ni50Ti45Hf5 and Ni49Ti51-xHfx (x=5,10,15) Shape Memory Alloy Ribbonsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林新智;鄒年棣zh_TW
dc.contributor.oralexamcommitteeHsin-Chih Lin;Nien-Ti Tsouen
dc.subject.keyword形狀記憶合金箔帶,形狀記憶效應,NiTiHf系列合金,快速凝固製程,麻田散體相變態,zh_TW
dc.subject.keywordShape memory alloy ribbons,Shape memory effects,NiTiHf Shape Memory Alloy,Rapid Solidification Process,Martensite transformation,en
dc.relation.page172-
dc.identifier.doi10.6342/NTU202503852-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
19.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved