Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅珮zh_TW
dc.contributor.advisorYa-Pei Changen
dc.contributor.author林承緯zh_TW
dc.contributor.authorCheng-Wei Linen
dc.date.accessioned2025-08-19T16:05:55Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1.     Rossmeisl J, Chen A. Brain Biopsy Techniques. In: Shores A, Brisson B, editors. Advanced Techniques in Canine and Feline Neurosurgery. Wiley-Blackwell; 2023. p. 179–89.
2.     Lichterman B. The First Instrument for Cerebral Mapping: Zernov’s Encephalometer and Its Modifications. Kopf Carr. 2005;61:1–5.
3.     Sipos E, Tebo S, Zinreich S. In Vivo Accuracy Testing and Clinical Experience with the ISG Viewing Wand. Neurosurgery. 1996;39(1):194–204.
4.     Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, et al. A Frameless, Armless Navigational System for Computer-Assisted Neurosurgery: Technical Note. J Neurosurg. 1991;74(5):845–9.
5.     Gumprecht HK, Widenka DC, Lumenta CB. BrainLab VectorVision Neuronavigation System:  Technology and Clinical Experiences in 131 Cases. Neurosurgery. 1999;44(1):97–104.
6.     Santos ERDS, Viana FR, Gonçalves PE, Lima MAC, Lyra CAM, Santos BFDO. Precision in Neuronavigation Systems: A Systematic Review and Meta-Analysis. Arq Bras Neurocir Braz Neurosurg. 2024;43(4):325–36.
7.     Willems PWA, van der Sprenkel JWB, Tulleken CA, Viergever MA, Taphoorn MJB. Neuronavigation and Surgery of Intracerebral Tumours. J Neurol. 2006;253(9):1123–36.
8.     Willems PW, van der Sprenkel JWB, Tulleken CA. Comparison of Adhesive Markers, Anatomical Landmarks, and Surface Matching in Patient-to-Image Registration for Frameless Stereotaxy. Biomonitoring Endosc Technol. 2001;4158:156–63.
9.     Coffey RJ, Lunsford LD. Animal Research Stereotactic Instrument Modified for Computed Tomographic Guidance. Appl Neurophysiol. 1987;50(1–6):81–6.
10.   Gutmann S, Tästensen C, Böttcher IC, Dietzel J, Loderstedt S, Kohl S, et al. Clinical Use of a New Frameless Optical Neuronavigation System for Brain Biopsies: 10 Cases (2013–2020). J Small Anim Pract. 2022;63(6):468–81.
11.   Xu Y, Salden S, Zhao X, Peremans K, Vansuypeene C, Haverbeke A, et al. Precise Localization of the Central Left Frontal Cortex in Different Canine Skull Types: A Comparative Study of Frameless Neuronavigation and External Measurement Techniques. J Vet Behav. 2024;76:53–9.
12.   Dockx R, Peremans K, Duprat R, Vlerick L, Van Laeken N, Saunders JH, et al. Accurate External Localization of the Left Frontal Cortex in Dogs by Using Pointer Based Frameless Neuronavigation. PeerJ. 2017;5:3425.
13.   Meneses F, Maiolini A, Forterre F, Oevermann A, Schweizer-Gorgas D. Feasability of a Frameless Brain Biopsy System for Companion Animals Using Cone-Beam CT-Based Automated Registration. Front Vet Sci. 2022;8:779845.
14.   Gowers WR. Introduction: The Structure and Functions of the Brain. In: A Manual of Diseases of the Nervous System. P. Blakiston, Son & Company; 1898. p. 1–12.
15.   Harvey Cushing MD. Surgery of the Head. In: Keen WW, editor. Surgery: Its Principles and Practice. Philadelphia and London : W. B. Saunders; 1911. p. 167.
16.   Schültke E. Theodor Kocher’s Craniometer. Neurosurgery. 2009;64(5):1001–5.
17.   Hare A. Lectures on Cranial Surgery. The Lancet. 1888;407–9.
18.   Zimmermann E. Wissenschaftliche Apparate, Liste 200. Leipz-Berl. 1937;52.
19.   Rahman M, Murad GJA, Mocco J. Early History of the Stereotactic Apparatus in Neurosurgery. Neurosurg Focus. 2009;27(3):1–5.
20.   Kocher T. Surgery of the Nervous System. In: Text-Book of Operative Surgery. 3rd ed. Macmillan; 1911. p. 200.
21.   Horsley V, Clarke RH. The Structure and Functions of the Cerebellum Examined by a New Method. Brain. 1908;31(1):45–124.
22.   Pereira EAC, Green AL, Nandi D, Aziz TZ. Stereotactic Neurosurgery in The United Kingdom: The Hundred Years from Horsley to Hariz. Neurosurgery. 2008;63(3):594.
23.   Dandy WE. Ventriculography Following the Injection of Air into the Cerebral Ventricles. Ann Surg. 1918;68(1):5–11.
24.   Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic Apparatus for Operations on the Human Brain. Science. 1947;106(2754):349–50.
25.   Spiegel EA, Wycis HT, Freed H. Stereoencephalotomy: Thalamotomy and Related Procedures. J Am Med Assoc. 1952;148(6):446–51.
26.   Lunsford LD, Leksell D. The Leksell System. In: Lunsford LD, editor. Modern Stereotactic Neurosurgery. Boston, MA: Springer US; 1988. p. 27–46.
27.   Ohye C. History of Stereotactic Surgery in Japan. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of Stereotactic and Functional Neurosurgery. Berlin, Heidelberg: Springer; 2009. p. 59–63.
28.   Bergstrom M, Greitz T. Stereotaxic computed tomography. Am J Roentgenol. 1976;127(1):167–70.
29.   Brown RA. A Stereotactic Head Frame for Use with CT Body Scanners. Invest Radiol. 1979;14(4):300.
30.   Leksell L, Jernberg B. Stereotaxis and Tomography a Technical Note. Acta Neurochir (Wien). 1980;52(1):1–7.
31.   Mundinger F, Birg W, Klar M. Computer-Assisted Stereotactic Brain Operations by Means Including Computerized Axial Tomography. Appl Neurophysiol. 1978;41(1–4):169–82.
32.   Perry JH, Rosenbaum AE, Lunsford DL, Swink CA, Zorub DS. Computed Tomography-Guided Stereotactic Surgery: Conception and Development of a New Stereotactic Methodology. Neurosurgery. 1980;7(4):376.
33.   Kelly PJ, Goerss SJ, Kall BA. Evolution of Contemporary Instrumentation for Computer-Assisted Stereotactic Surgery. Surg Neurol. 1988;30(3):204–15.
34.   Leksell L, Leksell D, Schwebel J. Stereotaxis and Nuclear Magnetic Resonance. J Neurol Neurosurg Psychiatry. 1985;48(1):14–8.
35.   Apuzzo MLJ, Chandrasoma PT, Cohen D, Zee CS, Zelman V. Computed Imaging Stereotaxy: Experience and Perspective Related to 500 Procedures Applied to Brain Masses. Neurosurgery. 1987;20(6):930.
36.   Gildenberg PL. Whatever Happened to Stereotactic Surgery? Neurosurgery. 1987;20(6):983–7.
37.   Ostertag CB, Mennel HD, Kiessling M. Stereotactic Biopsy of Brain Tumors. Surg Neurol. 1980;14(4):275–83.
38.   Mundinger F, Ostertag CB, Birg W, Weigel K. Stereotactic Treatment of Brain Lesions. Biopsy, Interstitial Radiotherapy (iridium-192 and iodine-125) and Drainage Procedures. Appl Neurophysiol. 1980;43(3–5):198–204.
39.   Kelly PJ, Kall BA, Goerss S. Transposition of Volumetric Information Derived from Computed Tomography Scanning into Stereotactic Space. Surg Neurol. 1984;21(5):465–71.
40.   Kelly PJ, Alker GJJ, Goerss S. Computer-assisted Stereotactic Laser Microsurgery for the Treatment of Intracranial Neoplasms. Neurosurgery. 1982 Mar;10(3):324.
41.   Shelden CH, McCann G, Jacques S, Lutes HR, Frazier RE, Katz R, et al. Development of a Computerized Microstereotaxic Method for Localization and Removal of Minute CNS Lesions Under Direct 3-D Vision: Technical Report. J Neurosurg. 1980;52(1):21–7.
42.   Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A Frameless Stereotaxic Integration of Computerized Tomographic Imaging and the Operating Microscope. J Neurosurg. 1986;65(4):545–9.
43.   Barnett GH, Kormos DW, Steiner CP, Weisenberger J. Intraoperative Localization Using an Armless, Frameless Stereotactic Wand. 1993;
44.   Reinhardt HF, Zweifel HJ. Interactive Sonar-Operated Device for Stereotactic and Open Surgery. Stereotact Funct Neurosurg. 1990;54–55(1–8):393–7.
45.   Horstmann GA, Reinhardt HF. Ranging Accuracy Test of the Sonic Microstereometric System. Neurosurgery. 1994;34(4):754.
46.   Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-Dimensional Digitizer (Neuronavigator): New Equipment for Computed Tomography-Guided Stereotaxic Surgery. Surg Neurol. 1987;27(6):543–7.
47.   Kosugi Y, Watanabe E, Goto J, Watanabe T, Yoshimoto S, Takakura K, et al. An Articulated Neurosurgical Navigation System Using MRI and CT Images. IEEE Trans Biomed Eng. 1988;35(2):147–52.
48.   Galloway RL, Maciunas RJ, Edwards CA. Interactive Image-Guided Neurosurgery. IEEE Trans Biomed Eng. 1992;39(12):1226–31.
49.   Sandeman DR, Gill SS. The Impact of Interactive Image Guided Surgery: The Bristol Experience with the ISG/Elekta Viewing Wand. In: Meyerson BA, Ostertag C, editors. Advances in Stereotactic and Functional Neurosurgery 11. Vienna: Springer; 1995. p. 54–8.
50.   Sandeman DR, Patal N, Chandler C, Nelson RJ, Coakham HB, Griffith HB. Advances in Image-Directed Neurosurgery: Preliminary Experience with the ISG Viewing Wand Compared with the Leksell G Frame. Br J Neurosurg. 1994;8(5):529–44.
51.   McDermott MW, Gutin PH. Image-Guided Surgery for Skull Base Neoplasms Using the ISG Viewing Wand: Anatomic and Technical Considerations. Neurosurg Clin N Am. 1996;7(2):285–95.
52.   Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF. Clinical Use of a Frameless Stereotactic Arm: Results of 325 Cases. J Neurosurg. 1995;83(2):197–205.
53.   Tan KK, Grzeszczuk R, Levin DN, Pelizzari CA, Chen GTY, Erickson RK, et al. A Frameless Stereotactic Approach to Neurosurgical Planning Based on Retrospective Patient-Image Registration: Technical Note. J Neurosurg. 1993;79(2):296–303.
54.   Zamorano LJ, Nolte L, Kadi AM, Jiang Z. Interactive Intraoperative Localization Using an Infrared-Based System. Neurol Res. 1993;15(5):290–8.
55.   Hayhurst C, Byrne P, Eldridge PR, Mallucci CL. Application of Electromagnetic Technology to Neuronavigation: A Revolution in Image-Guided Neurosurgery. J Neurosurg. 2009;111(6):1179–84.
56.   Glossop ND. Advantages of Optical Compared with Electromagnetic Tracking. J Bone Joint Surg Am. 2009;91 Suppl 1:23–8.
57.   Mascott CR. The Cygnus PFS Image-Guided System. Neurosurgery. 2000;46(1):235–8.
58.   Caversaccio M, Bächler R, Lädrach K, Schroth G, Nolte LP, Häusler R. The “Bernese” Frameless Optical Computer Aided Surgery System. Comput Aided Surg. 1999;4(6):328–34.
59.   Germano IM, Villalobos H, Silvers A, Post KD. Clinical Use of the Optical Digitizer for Intracranial Neuronavigation. Neurosurgery. 1999;45(2):261.
60.   Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J. Ultrasound-Controlled Neuronavigator-Guided Brain Surgery. J Neurosurg. 1993;79(1):36–42.
61.   Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker DK. Intraoperative Three-Dimensional Ultrasonography: An Approach to Register Brain Shift Using Multidimensional Image Processing. Minim Invasive Neurosurg MIN. 1998;41(1):13–9.
62.   Shamov T, Eftimov T, Kaprelyan A, Enchev Y. Ultrasound-Based Neuronavigation and Spinal Cord Tumour Surgery-Marriage of Convenience or Notified Incompatibility? Turk Neurosurg. 2012;
63.   Villa A, Costantino G, Meli F, Odierna Contino A, Imperato A, Francaviglia N. Ultrasound-Based Real-Time Neuronavigated Fluorescence-Guided Surgery for High-Grade Gliomas: Technical Note and Preliminary Experience. Acta Neurochir (Wien). 2019;161(12):2595–605.
64.   Matula C, Rössler K, Reddy M, Schindler E, Koos WT. Intraoperative Computed Tomography Guided Neuronavigation: Concepts, Efficiency, and Work Flow. Comput Aided Surg Off J Int Soc Comput Aided Surg. 1998;3(4):174–82.
65.   Black PM, Moriarty T, Alexander EI, Stieg P, Woodard EJ, Gleason PL, et al. Development and Implementation of Intraoperative Magnetic Resonance Imaging and Its Neurosurgical Applications. Neurosurgery. 1997;41(4):831.
66.   Schlaier J, Warnat ,J., and Brawanski A. Registration Accuracy and Practicability of Laser-Directed Surface Matching. Comput Aided Surg. 2002;7(5):284–90.
67.   Paraskevopoulos D, Unterberg A, Metzner R, Dreyhaupt J, Eggers G, Wirtz CR. Comparative Study of Application Accuracy of Two Frameless Neuronavigation Systems: Experimental Error Assessment Quantifying Registration Methods and Clinically Influencing Factors. Neurosurg Rev. 2011;34(2):217–28.
68.   Henderson JM, Smith KR, Bucholz RD. An Accurate and Ergonomic Method of Registration for Image-Guided Neurosurgery. Comput Med Imaging Graph. 1994;18(4):273–7.
69.   Schicho K, Figl M, Seemann R, Donat M, Pretterklieber ML, Birkfellner W, et al. Comparison of Laser Surface Scanning and Fiducial Marker–Based Registration in Frameless Stereotaxy. J Neurosurg. 2007;106(4):704–9.
70.   Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, Macdonald RL, Dohrmann GJ. Frameless Stereotaxy with Real-Time Tracking of Patient Head Movement and Retrospective Patient-Image Registration. J Neurosurg. 1996;85(2):287–92.
71.   Cho J, Rahimpour S, Cutler A, Goodwin CR, Lad SP, Codd P. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg. 2020;139:186–95.
72.   Carl B, Bopp M, Voellger B, Saß B, Nimsky C. Augmented Reality in Transsphenoidal Surgery. World Neurosurg. 2019;125:e873–83.
73.   Finger T, Schaumann A, Schulz M, Thomale UW. Augmented Reality in Intraventricular Neuroendoscopy. Acta Neurochir (Wien). 2017;159:1033–41.
74.   Karmonik C, Elias SN, Zhang JY, Diaz O, Klucznik RP, Grossman RG, et al. Augmented Reality with Virtual Cerebral Aneurysms: A Feasibility Study. World Neurosurg. 2018;119:617–22.
75.   Li Y, Chen X, Wang N, Zhang W, Li D, Zhang L, et al. A Wearable Mixed-Reality Holographic Computer for Guiding External Ventricular Drain Insertion at the Bedside. J Neurosurg. 2018;131(5):1599–606.
76.   Van Gestel F, Frantz T, Buyck F, Gallagher AG, Geens W, Neuville Q, et al. High-Accuracy Augmented Reality Guidance for Intracranial Drain Placement Using a Standalone Head-Worn Navigation System: First-in-Human Results. Neurosurgery. 2025;96(6):1217–26.
77.   Satoh M, Nakajima T, Yamaguchi T, Watanabe E, Kawai K. Application of Augmented Reality to Stereotactic Biopsy. Neurol Med Chir (Tokyo). 2019;59(11):444–7.
78.   Carl B, Bopp M, Saß B, Nimsky C. Microscope-Based Augmented Reality in Degenerative Spine Surgery: Initial Experience. World Neurosurg. 2019;128:541–51.
79.   Villalobos H, Germano IM. Clinical Evaluation of Multimodality Registration in Frameless Stereotaxy. Comput Aided Surg. 1999;4(1):45–9.
80.   Hoffmann J, Westendorff C, Leitner C, Bartz D, Reinert S. Validation of 3D-Laser Surface Registration for Image-Guided Cranio-Maxillofacial Surgery. J Cranio-Maxillofac Surg. 2005;33(1):13–8.
81.   Mascott CR, Sol JC, Bousquet P, Lagarrigue J, Lazorthes Y, Lauwers-Cances V. Quantification of True In Vivo (Application) Accuracy in Cranial Image-Guided Surgery: Influence of Mode of Patient Registration. Oper Neurosurg. 2006;59(1):146–56.
82.   Woerdeman PA, Willems PWA, Noordmans HJ, Tulleken CAF, Sprenkel JWB van der. Application Accuracy in Frameless Image-Guided Neurosurgery: A Comparison Study of Three Patient-to-Image Registration Methods. J Neurosurg. 2007;106(6):1012–6.
83.   Mongen MA, Willems PWA. Current Accuracy of Surface Matching Compared to Adhesive Markers in Patient-to-Image Registration. Acta Neurochir (Wien). 2019;161(5):865–70.
84.   Fitzpatrick JM, West JB, Maurer CR. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging. 1998 Oct;17(5):694–702.
85.   Wang MN, Song ZJ. Properties of the Target Registration Error for Surface Matching in Neuronavigation. Comput Aided Surg. 2011;16(4):161–9.
86.   Furuse M, Ikeda N, Kawabata S, Park Y, Takeuchi K, Fukumura M, et al. Influence of Surgical Position and Registration Methods on Clinical Accuracy of Navigation Systems in Brain Tumor Surgery. Sci Rep. 2023;13(1):2644.
87.   Miga MI, Sinha TK, Cash DM, Galloway RL, Weil RJ. Cortical Surface Registration for Image-Guided Neurosurgery Using Laser-Range Scanning. IEEE Trans Med Imaging. 2003;22(8):973–85.
88.   Cao A, Thompson RC, Dumpuri P, Dawant BM, Galloway RL, Ding S, et al. Laser Range Scanning for Image-Guided Neurosurgery: Investigation of Image-to-Physical Space Registrations. Med Phys. 2008;35(4):1593–605.
89.   Marmulla R, Hassfeld S, Lüth T, Mende U, Mühling J. Soft Tissue Scanning for Patient Registration in Image-Guided Surgery. Comput Aided Surg. 2003;8(2):70–81.
90.   Marmulla R, Lüth T, Mühling J, Hassfeld S. Automated Laser Registration in Image-Guided Surgery: Evaluation of the Correlation Between Laser Scan Resolution and Navigation Accuracy. Int J Oral Maxillofac Surg. 2004;33(7):642–8.
91.   Shamir RR, Freiman M, Joskowicz L, Spektor S, Shoshan Y. Surface-Based Facial Scan Registration in Neuronavigation Procedures: A Clinical Study. J Neurosurg. 2009;111(6):1201–6.
92.   Fan Y, Jiang D, Wang M, Song Z. A New Markerless Patient-to-Image Registration Method Using a Portable 3D Scanner. Med Phys. 2014;41(10):101910.
93.   Liu Y, Song Z, Wang M. A New Robust Markerless Method for Automatic Image-to-Patient Registration in Image-Guided Neurosurgery System. Comput Assist Surg. 2017;22(sup1):319–25.
94.   Fan Y, Yao X, Xu X. A Robust Automated Surface‐Matching Registration Method for Neuronavigation. Med Phys. 2020;47(7):2755–67.
95.   Moissonnier P, Bordeau W, Delisle F, Devauchelle P. Accuracy Testing of a New Stereotactic CT-Guided Brain Biopsy Device in the Dog. Res Vet Sci. 2000;68(3):243–7.
96.   Giroux A, Jones JC, Bohn JH, Duncan RB, Waldron DR, Inzana KR. A New Devive for Stereotactic CT‐Guided Biopsy of the Canine Brain: Design, Construction, and Needle Placement Accuracy. Vet Radiol Ultrasound. 2002;43(3):229–36.
97.   Flegel T, Podell M, March PA, Chakeres DW. Use of a Disposable Real-Time CT Stereotactic Navigator Device for Minimally Invasive Dog Brain Biopsy Through a Mini-Burr Hole. Am J Neuroradiol. 2002;23(7):1160–3.
98.   Troxel MT, Vite CH. CT‐Guided Stereotactic Brain Biopsy Using the Kopf Stereotactic System. Vet Radiol Ultrasound. 2008;49(5):438–43.
99.   Packer RA, Freeman LJ, Miller MA, Fauber AE, Morrison WB. Evaluation of Minimally Invasive Excisional Brain Biopsy and Intracranial Brachytherapy Catheter Placement in Dogs. Am J Vet Res. 2011;72(1):109–21.
100. Squires AD, Gao Y, Taylor SF, Kent M, Tse ZTH. A Simple and Inexpensive Stereotactic Guidance Frame for MRI-Guided Brain Biopsy in Canines. J Med Eng. 2014;2014(1):139535.
101. Koblik PD, Lecouteur RA, Higgins RJ, Bollen AW, Vernau KM, Kortz GD, et al. CT‐Guided Brain Biopsy Using a Modified Pelorus Mark III Stereotactic System: Experience with 50 Dogs. Vet Radiol Ultrasound. 1999;40(5):434–40.
102. Rossmeisl JH, Andriani RT, Cecere TE, Lahmers K, LeRoith T, Zimmerman KL, et al. Frame-Based Stereotactic Biopsy of Canine Brain Masses: Technique and Clinical Results in 26 Cases. Front Vet Sci. 2015;2:20.
103. Kani Y, Cecere TE, Lahmers K, LeRoith T, Zimmerman KL, Isom S, et al. Diagnostic Accuracy of Stereotactic Brain Biopsy for Intracranial Neoplasia in Dogs: Comparison of Biopsy, Surgical Resection, and Necropsy Specimens. J Vet Intern Med. 2019;33(3):1384–91.
104. Rossmeisl JH, Garcia PA, Pancotto TE, Robertson JL, Henao-Guerrero N, Neal RE, et al. Safety and Feasibility of the NanoKnife System for Irreversible Electroporation Ablative Treatment of Canine Spontaneous Intracranial Gliomas. J Neurosurg. 2015;123(4):1008–25.
105. Latouche EL, Arena CB, Ivey JW, Garcia PA, Pancotto TE, Pavlisko N, et al. High-Frequency Irreversible Electroporation for Intracranial Meningioma: A Feasibility Study in a Spontaneous Canine Tumor Model. Technol Cancer Res Treat. 2018;17:1533033818785285.
106. Taylor AR, Cohen ND, Fletcher S, Griffin JF, Levine JM. Application and Machine Accuracy of a New Frameless Computed Tomography‐Guided Stereotactic Brain Biopsy System in Dogs. Vet Radiol Ultrasound. 2013;54(4):332–42.
107. Chen AV, Wininger FA, Frey S, Comeau RM, Bagley RS, Tucker RL, et al. Description and Validation of a Magnetic Resonance Imaging‐Guided Stereotactic Brain Biopsy Device in the Dog. Vet Radiol Ultrasound. 2012;53(2):150–6.
108. Yang CC, Huang WH, Chang YP. Accuracy of a Frameless Optical Stereotactic Neuronavigation System for Brain Biopsy in Cats: A Cadaver Study. Taiwan Vet J. 2024;49(01):31–8.
109. Gutmann S, Heiderhoff M, Möbius R, Siegel T, Flegel T. Application Accuracy of a Frameless Optical Neuronavigation System as a Guide for Craniotomies in Dogs. Acta Vet Scand. 2023;65(1):54.
110. Owen TJ, Chen AV, Frey S, Martin LG, Kalebaugh T. Transsphenoidal Surgery: Accuracy of an Image-Guided Neuronavigation System to Approach the Pituitary Fossa (Sella Turcica). Vet Surg. 2018;47(5):664–71.
111. Dockx R, Baeken C, Duprat R, De Vos F, Saunders JH, Polis I, et al. Changes in Canine Cerebral Perfusion After Accelerated High Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS): A Proof of Concept Study. Vet J. 2018;234:66–71.
112. Long S, Frey S, Freestone D r., LeChevoir M, Stypulkowski P, Giftakis J, et al. Placement of Deep Brain Electrodes in the Dog Using the Brainsight Frameless Stereotactic System: A Pilot Feasibility Study. J Vet Intern Med. 2014;28(1):189–97.
113. Guevar J, Samer ES, Precht C, Rathmann JMK, Forterre F. Accuracy and Safety of Neuronavigation for Minimally Invasive Stabilization in the Thoracolumbar Spine Using Polyaxial Screws-Rod: A Canine Cadaveric Proof of Concept. Vet Comp Orthop Traumatol. 2022;35(06):370–80.
114. Papacella-Beugger A, Forterre F, Samer E, Guevar J, Müller A, Planchamp B, et al. Spinal Neuronavigation for Lumbar Plate Fixation in Miniature Breed Dogs. Vet Comp Orthop Traumatol. 2024;37(06):279–85.
115. Shinn RL, Hollingsworth C, Parker RL, Rossmeisl JH, Werre SR. Comparison of Stereotactic Brain Biopsy Techniques in Dogs: Neuronavigation, 3D-Printed Guides, and Neuronavigation with 3D-Printed Guides. Front Vet Sci. 2024;11:1406928.
116. Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav Res Methods. 2007;39(2):175–91.
117. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier; 2011.
118. Rorden C, Brett M. Stereotaxic Display of Brain Lesions. Behav Neurol. 2000;12(4):191–200.
119. West JB, Fitzpatrick JM, Toms SA, Maurer CRJ, Maciunas RJ. Fiducial Point Placement and the Accuracy of Point-based, Rigid Body Registration. Neurosurgery. 2001;48(4):810.
120. Wang MN, Song ZJ. Classification and Analysis of the Errors in Neuronavigation. Neurosurgery. 2011;68(4):1131–43.
121. Wang M, Song Z. How Does Adding Anatomical Landmarks as Fiducial Points in the Point-Matching Registration of Neuronavigation Influence Registration Accuracy? Comput Assist Surg. 2016;21(1):39–45.
122. Fitzpatrick JM, West JB. The Distribution of Target Registration Error in Rigid-Body Point-Based Registration. IEEE Trans Med Imaging. 2001;20(9):917–27.
123. Wiles AD, Likholyot A, Frantz DD, Peters TM. A Statistical Model for Point-Based Target Registration Error with Anisotropic Fiducial Localizer Error. IEEE Trans Med Imaging. 2008;27(3):378–90.
124. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser Surface Scanning for Patient Registration in Intracranial Image-Guided Surgery. Neurosurgery. 2002;50(4):797.
125. Hill DLG, Maurer CRJ, Maciunas RJ, Barwise JA, Fitzpatrick MJ, Wang MY. Measurement of Intraoperative Brain Surface Deformation under a Craniotomy. Neurosurgery. 1998;43(3):514.
126. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, Visualization of, and Compensation for Brain Shift Using Intraoperative Magnetic Resonance Imaging. Neurosurgery. 2000;47(5):1070.
127. Choi A, Chae S, Kim TH, Jung H, Lee SS, Lee KY, et al. A Novel Patient-to-Image Surface Registration Technique for ENT- and Neuro-Navigation Systems: Proper Point Set in Patient Space. Appl Sci. 2021;11(12):5464.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98760-
dc.description.abstract大腦結構精細且位於堅硬、不透明的顱骨內,使得臨床上對腦部進行活體組織之精準定位與採樣充滿挑戰。為提高手術的精確性與安全性,神經導航系統逐漸應用於臨床,其中光學式導航系統因操作靈活與應用範圍廣,日益成為主流。然而,目前獸醫領域多採用侵入性較高且操作複雜的標記點註冊法(fiducial-based registration),表面註冊法(surface-based registration)雖具有非侵入性及更簡化的操作流程,但在犬隻臨床應用之精準度尚未有系統性評估。因此,本研究旨在以犬隻大體模型,利用NaviVet®神經導航系統,評估光學神經導航系統應用表面註冊法進行腦部採樣的可行性,並與標記點註冊法進行比較,以提供獸醫臨床參考。
本研究使用8顆犬隻大體頭顱樣本。為進行術前規劃,首先於頭顱表面的左右顴骨弓、額竇中央偏側及枕骨隆突處植入四根骨釘後,進行電腦斷層掃描。於影像軟體中繪製導引目標後,匯入NaviVet®導航系統進行目標標記與路徑規劃。每顆頭顱左右大腦半球各規劃3–6對左右位置對稱的目標,共計72個目標(左右大腦半球各36個)。在註冊方法方面,右大腦半球採用表面註冊法,透過導航探針掃描頭顱表面擷取200個點,建立點雲模型完成註冊;隨後以NaviVet®系統導引脊髓針針芯至預先規劃的顱內目標,並以熱熔膠將其固定於顱骨表面。針芯固定後進行部分剪斷,末端保留外露。左大腦半球則採用標記點註冊法,利用先前植入的四根骨釘作為標記點完成註冊,並依相同流程導引針芯。所有針芯完成導引並經熱熔膠封固及部分剪斷後,進行術後電腦斷層掃描。在數據分析方面,透過齊疊合術前與術後影像,比對目標中心與針芯尖端座標,計算其距離(即目標註冊誤差,target registration error, TRE)作為導引精準度指標。此外,亦比較兩種註冊法之TRE、導引路徑長度、均方根誤差(root mean square error, RMSE)與操作時間,並分析可能影響導引精度之因素。
研究結果顯示,表面註冊之TRE(3.22±1.71 mm)與標記點註冊之TRE(3.74±1.75 mm)間無顯著差異(p = 0.158),兩種註冊法於導引精準度上表現相當。然而,表面註冊之操作時間(10.63±2.17分鐘)顯著短於標記點註冊(22.37±5.68分鐘;p < 0.05),展現其操作效率之優勢。此外,兩種註冊法之RMSE與TRE間僅呈低至中度正相關且未達顯著線性相關,暗示RMSE無法單獨作為導引精度預測指標。表面註冊的導引路徑長度與TRE呈顯著負相關(r = –0.358, p < 0.05),顯示路徑較短的目標反而可能伴隨較高的導引誤差。至於不同腦葉位置之TRE,無論何種註冊法,皆未呈現統計上顯著差異。
綜合上述結果,本研究證實犬隻使用光學神經導航系統於大體中進行腦部採樣時,應用表面註冊法之可行性;其精準度與傳統標記點註冊法相當,且展現操作簡便與低侵入性等優勢,具備良好之臨床推廣潛力。未來研究建議擴大樣本規模,增加病灶位置的多樣性,並評估更多元的表面掃描策略,以確認表面註冊技術在獸醫臨床實物中的可靠性與穩定性。
zh_TW
dc.description.abstractDue to the brain’s intricate structure within the rigid, opaque skill, accurate in vivo brain tissue localization and targeting remain challenging. Neuronavigation systems are increasingly being adopted in clinical practice to enhance surgical precision and safety, with optical tracking systems gaining popularity due to their procedural flexibility and board applicability. In veterinary neurosurgery, fiducial-based registration (FBR) is widely used. However, it is invasive and technically demanding. Surface-based registration (SBR) offers a non-invasive, simplified alternative, yet its accuracy in canine applications has not been evaluated. This study evaluated the feasibility and accuracy of SBR compared to FBR using the NaviVet® optical neuronavigation system in canine cadaver models.
Eight canine cadaver heads were used. Four Steinmann pins were implanted at the bilateral zygomatic arches, the paramedian region of the frontal sinus, and the external occipital protuberance, followed by preoperative computed tomography (CT) scanning. Phantom targets were then created using imaging software and imported into the NaviVet® system for trajectory planning. For each head, 3–6 pairs of bilaterally symmetrical targets were created in the left and right cerebral hemispheres, resulting in a total of 72 targets in the study (36 pairs across hemispheres). SBR was performed for the targets in the right hemisphere by acquiring 200 surface points via a tracked probe for point cloud generation and registration. A spinal needle stylet was then navigated into each target under navigation. Once positioned, it was fixed to the skull surface with hot melt adhesive, then partially cut to leave the distal end exposed. In contrast, FBR was performed for the targets in the left hemisphere using the four implanted pins as fiducial markers, followed by navigating spinal needle stylet to corresponding targets using the same navigation protocol. After all the stylets had been navigated to their targets, fixed with hot melt adhesive and partially cut, postoperative CT scans were acquired and coregistered with preoperative images to calculate target registration error (TRE), defined as the Euclidean distance between planned target coordinates and actual stylet tip positions. RMSE (root mean square error), trajectory length, and registration time were also recorded and analyzed.
The results revealed no significant difference in TRE between SBR (3.22 ± 1.71 mm) and FBR (3.74 ± 1.75 mm; p = 0.158), indicating comparable navigation accuracy. SBR required significantly less registration time than FBR (10.63 ± 2.17 vs. 22.37 ± 5.68 minutes; p < 0.05), highlighting its procedural efficiency. In both methods, RMSE and TRE were weakly to moderately correlated without statistical significance, suggesting that RMSE alone may not reliably predict navigation accuracy. For the SBR group, trajectory length was significantly and negatively correlated with TRE (r = –0.358, p < 0.05), indicating shorter trajectories may paradoxically lead to higher targeting errors. No significant differences in TRE were observed among different brain lobes in either method.
In summary, this study is the first to validate SBR feasibility for intracranial targeting in canine cadaver heads using an optical neuronavigation system. SBR achieved accuracy comparable to FBR while offering advantages in simplicity and minimal invasiveness, supporting its potential for clinical application. Future studies with larger sample sizes, diverse lesion locations, and alternative scanning strategies are warranted to evaluate the clinical robustness of SBR in veterinary neurosurgery.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:05:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:05:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT IV
目次 VI
圖次 VIII
表次 X
第一章、 研究背景 1
第二章、 文獻探討 3
第一節、 神經導航系統(NEURONAVIGATION)的背景與定位方式 3
第一項、 框架式(frame-based)立體定位裝置 3
第二項、 無框式(frameless)立體定位裝置 9
第二節、 神經導航系統的基本原則 16
第一項、 定義術前影像與術中操作的座標空間 16
第二項、 建立兩個座標空間之間的對位關係 16
第三項、 將空間對位結果呈現給術者 18
第三節、 比較表面註冊與標記點註冊之精準度 22
第四節、 神經導航系統於小動物醫學的相關文獻 28
第一項、 臨床應用與效益 28
第二項、 犬隻光學導航註冊方式之精準度探討 32
第三章、 研究目的 34
第四章、 實驗材料與方法 35
第一節、實驗對象 35
第二節、實驗流程 37
第一項、 神經導航系統 37
第二項、 術前準備:植入標記點與規劃顱內導引目標 39
第三項、 NaviVet®系統設置與器械註冊 41
第四項、 表面註冊流程與目標導引操作 42
第五項、 標記點註冊流程與目標導引操作 45
第六項、 術後影像處理與導引誤差分析 46
第三節、統計分析 47
第五章、 研究結果 49
第六章、 討論 55
第一節、 註冊方法對導引精度與操作效率之影響 56
第二節、 導引誤差的預測與來源 58
第三節、 研究限制與未來方向 64
第七章、 結論 66
參考文獻 67
-
dc.language.isozh_TW-
dc.subject表面註冊zh_TW
dc.subject神經導航系統zh_TW
dc.subject犬隻zh_TW
dc.subject腦部採樣zh_TW
dc.subject電腦斷層zh_TW
dc.subjectCTen
dc.subjectsurface-based registrationen
dc.subjectneuronavigationen
dc.subjectcanineen
dc.subjectbrain biopsyen
dc.title犬隻應用表面註冊於光學神經導航系統進行腦部採樣之可行性探討:大體實驗zh_TW
dc.titleFeasibility of Utilizing Surface-Based Registration for Canine Optical Neuronavigation in Brain Biopsy: A Cadaver Studyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭逸澤;劉乃潔zh_TW
dc.contributor.oralexamcommitteeYi-Tse Hsiao;Nai-Chieh Liuen
dc.subject.keyword表面註冊,神經導航系統,犬隻,腦部採樣,電腦斷層,zh_TW
dc.subject.keywordsurface-based registration,neuronavigation,canine,brain biopsy,CT,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202504092-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept臨床動物醫學研究所-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf31.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved