請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98756完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | zh_TW |
| dc.contributor.advisor | Yu-Pin Lin | en |
| dc.contributor.author | 張喬雲 | zh_TW |
| dc.contributor.author | Ciao-Yun Chang | en |
| dc.date.accessioned | 2025-08-19T16:04:51Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Acemoglu, D., Johnson, S., Robinson, J., & Thaicharoen, Y. (2003). Institutional causes, macroeconomic symptoms: volatility, crises and growth. Journal of monetary economics, 50(1), 49-123.
Acheampong, A. O., Nghiem, X.-H., Dzator, J., & Rajaguru, G. (2023). Promoting energy inclusiveness: Is rural energy poverty a political failure? Utilities Policy, 84, 101639. Acheampong, A. O., & Opoku, E. E. O. (2023). Energy justice, democracy and deforestation. Journal of Environmental Management, 341, 118012. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. Aslam, A., Rana, I. A., & Bhatti, S. S. J. E. I. A. R. (2021). The spatiotemporal dynamics of urbanisation and local climate: A case study of Islamabad, Pakistan. Environmental Impact Assessment Review, 91, 106666. Assessment, M. E. (2001). Millennium ecosystem assessment (Vol. 2): Millennium Ecosystem Assessment Washington, DC, USA. Babulo, B., Muys, B., Nega, F., Tollens, E., Nyssen, J., Deckers, J., & Mathijs, E. (2009). The economic contribution of forest resource use to rural livelihoods in Tigray, Northern Ethiopia. Forest policy and Economics, 11(2), 109-117. Bagstad, K. J., Semmens, D. J., Waage, S., & Winthrop, R. (2013). A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services, 5, 27-39. Bai, Y., Ochuodho, T. O., & Yang, J. (2019). Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 102, 51-64. Bai, Y., Ochuodho, T. O., Yang, J., & Agyeman, D. A. (2021). Bundles and hotspots of multiple ecosystem services for optimized land management in Kentucky, United States. Land, 10(1), 69. Bai, Y., Zhuang, C., Ouyang, Z., Zheng, H., & Jiang, B. (2011). Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecological Complexity, 8(2), 177-183. Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B., . . . Dugdale, S. (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. 341(6141), 45-50. Beck, T., & Nesmith, C. (2001). Building on poor people's capacities: the case of common property resources in India and West Africa. World Development, 29(1), 119-133. Best, R., & Burke, P. J. (2017). The importance of government effectiveness for transitions toward greater electrification in developing countries. Energies, 10(9), 1247. Bhaduri, A., Ringler, C., Dombrowski, I., Mohtar, R., & Scheumann, W. (2015). Sustainability in the water–energy–food nexus. In (Vol. 40, pp. 723-732): Taylor & Francis. Bidoglio, G., & Brander, L. (2016). Enabling management of the water-food-energy-ecosystem services nexus. In (Vol. 17, pp. 265-267). Ecosystem Services: Elsevier. Brown, D. G., Verburg, P. H., Pontius Jr, R. G., & Lange, M. D. (2013). Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 5(5), 452-457. Chai, J., Shi, H., Lu, Q., & Hu, Y. (2020). Quantifying and predicting the Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian networks-a case study of China. Journal of Cleaner Production, 256, 120266. Chaplin-Kramer, R., Sharp, R. P., Weil, C., Bennett, E. M., Pascual, U., Arkema, K. K., . . . Haddad, N. M. (2019). Global modeling of nature’s contributions to people. 366(6462), 255-258. Chaudhary, A., Gustafson, D., & Mathys, A. (2018). Multi-indicator sustainability assessment of global food systems. Nature communications, 9(1), 848. Chen, H., Yan, W., Li, Z., Wende, W., Xiao, S., Wan, S., & Li, S. (2022). Spatial patterns of associations among ecosystem services across different spatial scales in metropolitan areas: A case study of Shanghai, China. Ecological Indicators, 136, 108682. Chen, J., Ding, T., Wang, H., Yu, X. J. I. J. o. E. R., & Health, P. (2019). Research on total factor productivity and influential factors of the regional water–energy–food nexus: A case study on Inner Mongolia, China. 16(17), 3051. Chen, L., Yao, Y., Xiang, K., Dai, X., Li, W., Dai, H., . . . Zhang, Y. (2024). Spatial-temporal pattern of ecosystem services and sustainable development in representative mountainous cities: A case study of Chengdu-Chongqing Urban Agglomeration. Journal of Environmental Management, 368, 122261. Chen, P. (2021). Effects of the entropy weight on TOPSIS. 168, 114186. Chen, P., Feng, Z., Mannan, A., Chen, S., & Ullah, T. (2019). Assessment of soil loss from land use/land cover change and disasters in the Longmen Shan Mountains, China. Applied Ecology Environmental Research, 17(5). Connor, R. (2015). The United Nations world water development report 2015: water for a sustainable world (Vol. 1): UNESCO publishing. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., . . . Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. 387(6630), 253-260. Council, N. I. (2012). Global trends 2030: Alternative worlds: a publication of the National Intelligence Council: US Government Printing Office. Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., & Maghsood, F. F. (2021). Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621. De Jesus Crespo, R., Valladares-Castellanos, M., Mihunov, V. V., & Douthat, T. (2023). Going with the flow: the supply and demand of sediment retention ecosystem services for the reservoirs in Puerto Rico. Frontiers in Environmental Science, 11, 1214037. Dennedy-Frank, P. J., Muenich, R. L., Chaubey, I., & Ziv, G. (2016). Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management, 177, 331-340. Ding, T., Chen, J., Fang, Z., & Chen, J. (2021). Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecological Indicators, 133, 108454. Ding, T., Fang, L., Chen, J., Ji, J., & Fang, Z. (2023). Exploring the relationship between water-energy-food nexus sustainability and multiple ecosystem services at the urban agglomeration scale. Sustainable Production Consumption, 35, 184-200. Ding, Y., & Peng, J. (2018). Impacts of urbanization of mountainous areas on resources and environment: Based on ecological footprint model. Sustainability, 10(3), 765. Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2012). Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436, 35-50. Finegold, Y., & Ortmann, A. (2016). Map accuracy assessment and area estimation: a practical guide. Fisher, P., Comber, A. J., & Wadsworth, R. (2005). Land use and land cover: contradiction or complement. 85, 98. Goldstein, J. H., Caldarone, G., Duarte, T. K., Ennaanay, D., Hannahs, N., Mendoza, G., . . . Daily, G. C. (2012). Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences 109(19), 7565-7570. Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., . . . Noble, I. (2013). Sustainable development goals for people and planet. 495(7441), 305-307. Hamel, P., Chaplin-Kramer, R., Sim, S., & Mueller, C. J. S. o. t. T. E. (2015). A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. 524, 166-177. Han, B., Reidy, A., & Li, A. (2021). Modeling nutrient release with compiled data in a typical Midwest watershed. Ecological Indicators, 121, 107213. Han, D., Yu, D., & Cao, Q. (2020). Assessment on the features of coupling interaction of the food-energy-water nexus in China. Journal of Cleaner Production, 249, 119379. Hanes, R. J., Gopalakrishnan, V., & Bakshi, B. R. (2018). Including nature in the food-energy-water nexus can improve sustainability across multiple ecosystem services. Resources, Conservation Recycling, 137, 214-228. Heidari, H., Arabi, M., Warziniack, T., & Sharvelle, S. (2021). Effects of urban development patterns on municipal water shortage. Frontiers in Water, 3, 694817. Hoff, H. (2011). Understanding the nexus. Hoyer, R., & Chang, H. (2014). Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Applied Geography, 53, 402-416. Hu, X., Ma, C., Huang, P., & Guo, X. (2021). Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecological Indicators, 125, 107464. Hui, X., Yiwen, W., Zongyan, Z., Yigong, G., & Dawei, Z. (2021). Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin. Resources Science, 43(12), 2526-2537. Jame, A., Noizat, C., Morin, E., Paulhac, H., Guinard, Y., Rodier, T., . . . Preux, T. (2024). A combination of methods for mapping heat and cool areas in past and current urban landscapes of Poitiers (France). Ecological Indicators, 167, 112712. Jia, Z., Cai, Y., Chen, Y., & Zeng, W. (2018). Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resources, Conservation Recycling, 134, 282-293. Kammerlander, A., & Schulze, G. G. (2021). Political-economic correlates of environmental policy. Environmental Research Letters, 16(2), 024047. Kreuter, U. P., Harris, H. G., Matlock, M. D., & Lacey, R. E. (2001). Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics, 39(3), 333-346. Krkoška Lorencová, E., Harmáčková, Z. V., Landová, L., Pártl, A., & Vačkář, D. (2016). Assessing impact of land use and climate change on regulating ecosystem services in the Czech Republic. Ecosystem Health Sustainability, 2(3), e01210. Lautenbach, S., Kugel, C., Lausch, A., & Seppelt, R. (2011). Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecological Indicators, 11(2), 676-687. Li, W., Kang, J., & Wang, Y. (2024). Identifying the impacts of landscape structure on ecosystem services trade-offs among ecosystem services bundles in the mountains of Southwest China. Ecological Engineering, 209, 107419. Li, W., Wang, Y., Xie, S., & Cheng, X. (2021). Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Science of the Total Environment, 791, 148311. Li, Y., Li, Y., Zhou, Y., Shi, Y., & Zhu, X. (2012). Investigation of a coupling model of coordination between urbanization and the environment. Journal of Environmental Management, 98, 127-133. Liao, C. B. (1999). Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the city group in the Pearl River Delta. Tropical Geography, 19(2), 171-177. Liu, M., Wei, H., Dong, X., Wang, X.-C., Zhao, B., & Zhang, Y. (2022). Integrating land use, ecosystem service, and human well-being: A systematic review. 14(11), 6926. Lu, J., Cheng, Y., Qi, X., Chen, H., & Lin, X. (2024). Rethinking urban wilderness: Status, hotspots, and prospects of ecosystem services. Journal of Environmental Management, 364, 121366. Lu, Y., & Qin, F. (2024). Improvements in the InVEST water purification model for detecting spatio-temporal changesintotal nitrogen and total phosphorus discharges in the Huai river watershed, China. Journal of Environmental Management, 366, 121918. McIntyre, N., Moore, J., & Yuan, M. (2008). A place-based, values-centered approach to managing recreation on Canadian crown lands. Society Natural Resources, 21(8), 657-670. Moran, P. A. (1950). Notes on continuous stochastic phenomena. 37(1/2), 17-23. Nadaraja, D., Lu, C., & Islam, M. M. (2021). The sustainability assessment of plantation agriculture-a systematic review of sustainability indicators. Sustainable Production Consumption, 26, 892-910. Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., . . . Batka, M. (2009). Climate change: Impact on agriculture and costs of adaptation (Vol. 21): Intl Food Policy Res Inst. Opoku, E. E. O., Acheampong, A. O., & Aluko, O. A. (2024). Impact of rural-urban energy equality on environmental sustainability and the role of governance. Journal of Policy Modeling, 46(2), 304-335. Orsi, F., Ciolli, M., Primmer, E., Varumo, L., & Geneletti, D. (2020). Mapping hotspots and bundles of forest ecosystem services across the European Union. Land use policy, 99, 104840. Putra, M. P. I. F., Pradhan, P., & Kropp, J. P. (2020). A systematic analysis of Water-Energy-Food security nexus: A South Asian case study. Science of the Total Environment, 728, 138451. Qiu, H., Zhang, J., Han, H., Cheng, X., & Kang, F. (2023). Study on the impact of vegetation change on ecosystem services in the Loess Plateau, China. Ecological Indicators, 154, 110812. Rasul, G. (2014). Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region☆. Environmental Science Policy, 39, 35-48. Reyers, B., & Selig, E. R. (2020). Global targets that reveal the social–ecological interdependencies of sustainable development. Nature Ecology Evolution, 4(8), 1011-1019. Roy, P. S., Ramachandran, R. M., Paul, O., Thakur, P. K., Ravan, S., Behera, M. D., . . . Kanawade, V. P. (2022). Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. Journal of the Indian Society of Remote Sensing, 50(8), 1615-1640. Saladini, F., Betti, G., Ferragina, E., Bouraoui, F., Cupertino, S., Canitano, G., . . . Riccaboni, A. (2018). Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecological Indicators, 91, 689-697. Sharp, R., Tallis, H., & Ricketts, T. (2015). InVEST 3.2. 0 User’s Guide. The Natural Capital Project. Stanford University, University of Minnesota. The Nature Conservancy World Wildlife Fund, 123-156. SHEN, J.-s., LI, S.-c., LIANG, Z., WANG, Y.-y., & SUN, F.-y. (2021). Research progress and prospect for the relationships between ecosystem services supplies and demands. Journal of Natural Resources, 36(8), 1909-1922. Shi, Y., Ge, X., Yuan, X., Wang, Q., Kellett, J., Li, F., & Ba, K. (2019). An integrated indicator system and evaluation model for regional sustainable development. 11(7), 2183. Su, Y., Chen, X., Li, Y., & Wang, Y. (2024). The robustness mechanism of the rural social-ecological system in response to the impact of urbanization——Evidence from irrigation commons in China. World Development, 178, 106565. Sun, C., & Hao, S. (2022). Research on the competitive and synergistic evolution of the water-energy-food system in China. Journal of Cleaner Production, 365, 132743. Sun, L., Niu, D., Yu, M., Li, M., Yang, X., & Ji, Z. (2022). Integrated assessment of the sustainable water-energy-food nexus in China: Case studies on multi-regional sustainability and multi-sectoral synergy. Journal of Cleaner Production, 334, 130235. Tang, J., Li, Y., Cui, S., Xu, L., Ding, S., & Nie, W. (2020). Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Global Ecology and Conservation, 23, e01177. Thornton, J. M., Snethlage, M. A., Sayre, R., Urbach, D. R., Viviroli, D., Ehrlich, D., . . . Adler, C. (2022). Human populations in the world’s mountains: Spatio-temporal patterns and potential controls. PLoS One, 17(7), e0271466. Tsai, C. W., Lin, M.-L., & Tung, J. Y. (2024). Spatial and temporal evolution of heatwaves in Taiwan in a changing climate using multi-dimensional complementary ensemble empirical mode decomposition. Ecological Informatics, 81, 102585. Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: methods and applications: CRC press. Unep, D. J. R. c. f. w. u. g., & digital technologies. (2021). Partnership and United Nations Environment Programme (2021). Vallet, A., Locatelli, B., Levrel, H., Wunder, S., Seppelt, R., Scholes, R. J., & Oszwald, J. (2018). Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies. Ecological Economics, 150, 96-106. Verburg, P. H. (2006). Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21, 1171-1183. Verma, P., & Raghubanshi, A. S. (2018). Urban sustainability indicators: Challenges and opportunities. Ecological Indicators, 93, 282-291. Vitousek, P. M. (1994). Beyond global warming: ecology and global change. 75(7), 1861-1876. Wang, K., Li, X., Lyu, X., Dang, D., Cao, W., & Du, Y. (2024). Unraveling the complex interconnections between food-energy-water nexus sustainability and the supply-demand of related ecosystem services. Journal of Environmental Management, 370, 122532. Wang, Q., Li, S., He, G., Li, R., & Wang, X. (2018). Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. Journal of Cleaner Production, 202, 1097-1106. Wang, Y., Xie, Y., Qi, L., He, Y., & Bo, H. (2022). Synergies evaluation and influencing factors analysis of the water–energy–food nexus from symbiosis perspective: A case study in the Beijing–Tianjin–Hebei region. Science of the Total Environment, 818, 151731. Weitzman, J. N., & Kaye, J. P. (2016). Variability in soil nitrogen retention across forest, urban, and agricultural land uses. Ecosystems, 19, 1345-1361. Wood, S. L., Jones, S. K., Johnson, J. A., Brauman, K. A., Chaplin-Kramer, R., Fremier, A., . . . Mandle, L. (2018). Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem Services, 29, 70-82. Woznicki, S. A., Cada, P., Wickham, J., Schmidt, M., Baynes, J., Mehaffey, M., & Neale, A. (2020). Sediment retention by natural landscapes in the conterminous United States. Science of the Total Environment, 745, 140972. Wu, C., Liu, W., & Deng, H. (2023). Urbanization and the emerging water crisis: identifying water scarcity and environmental risk with multiple applications in urban agglomerations in Western China. Sustainability, 15(17), 12977. Wu, L., Elshorbagy, A., Pande, S., & Zhuo, L. (2021). Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resources, Conservation Recycling, 164, 105192. Xu, M., Xu, G., Liu, S., Li, J., Li, Z., Cheng, Y., . . . Gu, F. (2025). Changes in water conservation and a new estimation for its future potential. CATENA, 250, 108761. Yang, Z., Zhan, J., Wang, C., & Twumasi-Ankrah, M. J. (2022). Coupling coordination analysis and spatiotemporal heterogeneity between sustainable development and ecosystem services in Shanxi Province, China. Science of the Total Environment, 836, 155625. Yi, J., Guo, J., Ou, M., Pueppke, S. G., Ou, W., Tao, Y., & Qi, J. (2020). Sustainability assessment of the water-energy-food nexus in Jiangsu Province, China. Habitat international, 95, 102094. Yin, H., Xiao, R., Fei, X., Zhang, Z., Gao, Z., Wan, Y., . . . Guo, Y. (2023). Analyzing “economy-society-environment” sustainability from the perspective of urban spatial structure: A case study of the Yangtze River delta urban agglomeration. Sustainable Cities Society Natural Resources, 96, 104691. Yonaba, R., Koïta, M., Mounirou, L., Tazen, F., Queloz, P., Biaou, A., . . . Yacouba, H. (2021). Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso. Land use policy, 103, 105305. Yuan, M.-H., & Lo, S.-L. (2020). Ecosystem services and sustainable development: Perspectives from the food-energy-water Nexus. Ecosystem Services, 46, 101217. Zeren Cetin, I., & Sevik, H. (2020). Investigation of the relationship between bioclimatic comfort and land use by using GIS and RS techniques in Trabzon. Environmental monitoring assessment, 192, 1-14. Zeren Cetin, I., Varol, T., & Ozel, H. B. (2023). A geographic information systems and remote sensing–based approach to assess urban micro-climate change and its impact on human health in Bartin, Turkey. Environmental monitoring assessment, 195(5), 540. Zhang, J., Wang, S., Pradhan, P., Zhao, W., & Fu, B. (2022). Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resources, Conservation Recycling, 183, 106357. Zhang, Y., Fu, B., & Sun, J. (2022). Heat wave mitigation of ecosystems in mountain areas—a case study of the Upper Yangtze River basin. Ecosystem Health and Sustainability, 8(1), 2084459. Zhang, Y., & Wang, Y. (2024). Evaluation and prediction of water-energy-food nexus under land use changes in the Yellow River Basin, China. Sustainable Futures, 8, 100307. Zhao, L., Liu, S., & Sun, C. (2021). Study on coupling and coordinated development of water-energy-food security system in the Yellow River Basin. 37, 69-78. Zhao, R., Liu, Y., Tian, M., Ding, M., Cao, L., Zhang, Z., . . . Yao, L. (2018). Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land use policy, 72, 480-492. Zhi, Y., Chen, J., Wang, H., Liu, G., & Zhu, W. (2020). Assessment of water-energy-food nexus fitness in China from the perspective of symbiosis. China Popul. Resour. Environ, 30(1), 129-139. Zorrilla-Miras, P., Palomo, I., Gómez-Baggethun, E., Martín-López, B., Lomas, P. L., & Montes, C. (2014). Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landscape Urban Planning, 122, 160-174. 周品樺. (2024). 氣候與土地利用變遷下的生態系服務時空熱點與權衡關係—以陳有蘭溪流域為例. (碩士). 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/4q4y7m 臺灣博碩士論文知識加值系統 database. 林真真, 郝飛洋, & 黃禹馨. (2017). 地震之空間聚集性研究-以 921 地震為例. 智慧科技與應用統計學報, 15(2), 1-12. 張文豪. (2018). 以系統性保育規劃法評估氣候變遷對生態系服務的影響-以陳有蘭溪流域為例. (碩士). 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/6bkumq 臺灣博碩士論文知識加值系統 database. 張宸瑄. (2024). 生態系服務基礎之水-糧食-能源鏈結永續評估— 以桃園市為例 (碩士). 國立台灣大學, 台北市. 蕭戎雯. (2013). 不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例. (碩士). 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/x2a6k8 臺灣博碩士論文知識加值系統 database. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98756 | - |
| dc.description.abstract | 在全球氣候變遷與資源壓力日益嚴峻的背景下,如何在經濟發展與生態保育之間取得平衡,已成為永續發展的重要課題。水、能源與糧食三者之間具高度關聯性,形成所謂的水-能源-糧食鏈結(Water- Energy- Food Nexus, WEF Nexus)。然而,目前對於生態系服務(Ecosystem Services, ESs)與WEF Nexus永續性之間關聯性的探討仍顯不足,尤缺乏區域尺度的實證研究。臺中市作為臺灣主要都市之一,其快速的城市化與產業發展對區域資源與環境系統帶來高度挑戰,因而成為進行相關研究的重要案例區。本研究旨在透過InVEST模式與空間統計方法,量化臺中市2007、2014與2021年間生態系服務之空間分布,並結合WEF Nexus永續性指標,探討兩者間之空間權衡關係與耦合協調度模型。期望藉由本研究,提供臺中市永續資源管理之量化依據,並為整合生態系服務與資源鏈結永續性提出具體策略建議,進一步促進區域永續發展與政策規劃。
本研究以臺中市為研究區,針對2007、2014與2021年三個時間點,運用InVEST模式量化七項生態系服務,包括碳儲存、作物生產、氮、磷營養鹽留存、沉積物留存、都市降溫與產水量,並進行標準化處理後透過區域型局部空間關聯指標 LISA(local indicators of spatial association)進行空間熱點分析,找出穩定且具包含四種以上生態系服務供應功能之熱區。另一方面,依據T. Ding, Fang, Chen, Ji, and Fang (2023)提出之WEF Nexus永續性指標體系,蒐集十八項代表性指標並以熵權法計算其權重,建立水、能源、糧食三個子系統之永續性空間分佈。進一步,採用皮爾遜相關分析探討多項生態系服務與WEF Nexus永續性之間的權衡關係,並運用耦合協調度方法(Coupling Coordination Degree Method, CCDM)評估二者在行政區尺度上的耦合協同程度,揭示其潛在的空間協作與資源優化可能性。 研究結果表示臺中市具有四種以上生態系服務熱點的區域分布於全市36%至38%之間,主要集中於林地覆蓋區,凸顯自然植被對生態功能的貢獻。臺中市整體生態系服務以協同關係為主,惟作物生產、產水量與都市降溫等項目與其他服務間存在競合或不穩定關係,主要受限於降雨與土地利用的時空變異性。WEF Nexus永續性分析方面,東部山區在水與糧食子系統中表現出高度且穩定之永續性,西部都市與農業區則因人口集中與資源需求壓力導致永續性偏低,能源子系統則在工業區域如大雅與西屯展現較佳表現。耦合協調度進一步揭示,和平區因森林覆蓋與自然資源優勢,整體協調度長期穩定表現最佳。碳儲存、營養鹽留存等調節型服務與WEF Nexus永續性關聯高度協同,且整體協調性隨時間提升,反之,都市核心與農業平原地區則多呈現不協調狀態。其中,三個年份各行政區的沉積物留存則持續呈現不協調狀態。作物生產受限於旱作比例與都市化壓力,多數行政區呈現不協調或弱協調,特別是和平區長期高度不協調。Pearson相關分析顯示,水與糧食子系統普遍與碳儲存、都市降溫、沉積物留存等服務具中至高度協同關係,能源子系統則僅與作物生產呈穩定正相關。三大子系統間競合與協同關係具時間動態,都市化與空間資源配置對整體耦合關係具有明顯影響。 本研究透過城市鄉鎮尺度探討生態系服務與水-能源-糧食鏈結永續性之空間與時間變化特性,透過耦合協調分析與權衡關係,揭示不同區域生態功能與資源系統間的互動關係與協同潛力。其研究成果可作為政府在國土規劃與資源管理政策制定之重要參考依據,亦可提供其他城市在推動多元生態系服務與WEF Nexus永續性協調發展時之策略指引,促進永續城市治理與區域整合發展。 | zh_TW |
| dc.description.abstract | Amid escalating global climate change and increasing resource pressures, achieving a balance between economic development and ecological conservation has become a critical issue for sustainable development. The water-energy-food nexus highlights the highly interlinked nature of water, energy, and food systems, which are directly influenced by the supply and stability of multiple ecosystem services. However, current research on the relationship between ecosystem services and the sustainability of the WEF nexus remains insufficient, especially empirical studies at the regional scale. As one of Taiwan’s major cities, Taichung has undergone rapid urbanization and industrial development, which has posed significant challenges to regional resources and environmental systems—making it an ideal case for this type of research.
This study aims to apply the InVEST model and spatial statistical methods to quantify the spatial distribution of seven ecosystem services in Taichung City for the years 2007, 2014, and 2021. These services include carbon storage, food production, nitrogen and phosphorus retention, sediment retention, urban cooling, and water yield. After standardization, hotspot analysis was conducted using local indicators of spatial association to identify areas with stable multifunctionality—defined as providing four or more ecosystem services. Meanwhile, based on the WEF nexus sustainability indicator system proposed by T. Ding (2023), eighteen representative indicators were collected and weighted using the entropy weight method to construct spatial distributions of sustainability across the water, energy, and food subsystems. Subsequently, Pearson correlation analysis was used to examine the spatiotemporal trade-offs between various ecosystem services and the WEF nexus sustainability indices. The Coupling Coordination Degree Method was also employed to assess the degree of coordination between the two at the administrative district level, revealing potential areas for spatial collaboration and resource optimization. The results indicate that areas with hotspots of four or more ecosystem services cover approximately 36% to 38% of Taichung’s area, primarily concentrated in forested zones, highlighting the crucial role of natural vegetation in supporting ecological functions. Overall, ecosystem services in Taichung exhibit mainly synergistic relationships, though trade-offs or unstable interactions exist—particularly between crop production, water yield, and urban cooling—largely influenced by spatiotemporal variations in precipitation and land use. In terms of WEF nexus sustainability, the eastern mountainous regions display high and stable performance in the water and food subsystems, whereas the western urban and agricultural zones show relatively lower sustainability due to population density and resource pressure. The energy subsystem performs better in industrial areas such as Daya and Xitun. Coupling coordination analysis further reveals that Heping District, benefiting from its extensive forest cover and abundant natural resources, consistently exhibits the highest and most stable coordination levels. Regulating services such as carbon storage and nutrient retention show strong synergies with WEF sustainability, with overall coordination improving over time. In contrast, urban cores and agricultural plains often display uncoordinated states. Notably, sediment retention remains in an uncoordinated state across all districts throughout the three study years. Crop production, constrained by a high proportion of dryland farming and urbanization pressures, demonstrates uncoordinated or weakly coordinated states in most districts—particularly in Heping District, which shows persistent high-level uncoordination. Pearson correlation analysis indicates that the water and food subsystems generally exhibit moderate to strong synergies with services like carbon storage and urban cooling. In contrast, the energy subsystem shows a stable positive correlation only with crop production. The competitive and synergistic relationships among the three subsystems vary over time, with urbanization and spatial resource allocation having a clear influence on the overall coupling dynamics. By examining the spatial and temporal dynamics of ecosystem services and WEF nexus sustainability at the township level, this study reveals the interactive relationships and coordination potential between regional ecological functions and resource systems through trade-off and coupling analysis. The findings provide a quantitative foundation for sustainable resource management in Taichung and offer strategic insights for integrating ecosystem services and WEF nexus sustainability, thereby promoting sustainable urban governance and regional integrated development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:04:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:04:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 圖次 ix 表次 xii 第一章、前言 1 1.1研究動機 1 1.2研究目的 3 1.3研究架構 4 第二章、文獻回顧 6 2.1土地利用與土地覆蓋變遷 6 2.2生態系服務 7 2.2.1生態系服務熱點 9 2.3水-能源-糧食鏈結永續性 11 2.4權衡關係 12 2.5 耦合協調度分析 13 第三章、研究方法 15 3.1研究區域 15 3.2生態系服務量化 21 3.2.1年產水量 21 3.2.2碳儲存 22 3.2.3作物生產 24 3.2.4營養鹽留存 24 3.2.5沉積物留存 25 3.2.6都市降溫 27 3.3熱點分析 29 3.3.1空間自相關分析 30 3.4水-能源-糧食鏈結永續性指標 31 3.4.1水子系統 33 3.4.2能源子系統 35 3.4.3糧食子系統 37 3.4.4熵權法(Entropy Weight) 38 3.5 PEARSON相關係數 40 3.6耦合協調度 41 第四章、研究結果 43 4.1生態系服務量化 43 4.1.1年產水量 43 4.1.2碳儲存 46 4.1.3作物生產 48 4.1.4營養鹽留存 51 4.1.5沉積物留存 56 4.1.6都市降溫 58 4.1.7生態系服務熱點 63 4.1.8生態系服務權衡關係 66 4.2 WEF永續性指標評估 69 4.2.1 水子系統 69 4.2.2 能源子系統 71 4.2.3 糧食子系統 73 4.2.4 WEF永續性結果 75 4.2.5 生態系服務熱區與全臺中市之永續性 76 4.2.6 WEF永續性指標權衡關係 78 4.3生態系服務與WEF Nexus永續性之間的關係評估 79 4.3.1耦合協調度分析 79 4.3.2 生態系服務與WEF Nexus永續性之間的權衡關係 88 第五章、結果討論 90 5.1生態系服務 90 5.1.1產水量 90 5.1.2碳儲存 91 5.1.3作物生產 92 5.1.4營養鹽留存 93 5.1.5沉積物留存 94 5.1.6都市降溫 95 5.1.7生態系服務熱點 96 5.1.8生態系服務權衡關係 98 5.2 WEF Nexus永續性指標 101 5.2.1水子系統 101 5.2.2能源子系統 102 5.2.3糧食子系統 103 5.2.4 WEF Nexus永續性指標權衡關係 104 5.3生態系服務與WEF NEXUS永續性之間的關係評估 108 5.3.1生態系服務與WEF Nexus永續性之間的耦合協調度 108 5.3.2 生態系服務與WEF Nexus永續性指標權衡關係 109 第六章、結論與建議 113 6.1結論 113 6.2建議 114 第七章、參考文獻 116 附錄 131 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生態系服務 | zh_TW |
| dc.subject | InVEST模式 | zh_TW |
| dc.subject | 水-能源-糧食鏈結永續性 | zh_TW |
| dc.subject | 生態系服務熱點 | zh_TW |
| dc.subject | 權衡關係 | zh_TW |
| dc.subject | 耦合協調度 | zh_TW |
| dc.subject | Water-Energy-Food nexus sustainability | en |
| dc.subject | Ecosystem services | en |
| dc.subject | Coupling coordination degree | en |
| dc.subject | Trade-off analysis | en |
| dc.subject | Ecosystem service hotspots | en |
| dc.subject | InVEST model | en |
| dc.title | 臺中市生態系服務對水-能源-糧食鏈結永續性的時空演變與影響評估 | zh_TW |
| dc.title | Spatiotemporal Evolution and Impact Assessment of Ecosystem Services on the Water-Energy-Food Nexus Sustainability in Taichung City | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江莉琦;潘述元;王咏潔 | zh_TW |
| dc.contributor.oralexamcommittee | LI-CHI CHIANG;SHU-YUAN PAN;Yung-Chieh Wang | en |
| dc.subject.keyword | 生態系服務,InVEST模式,水-能源-糧食鏈結永續性,生態系服務熱點,權衡關係,耦合協調度, | zh_TW |
| dc.subject.keyword | Ecosystem services,InVEST model,Water-Energy-Food nexus sustainability,Ecosystem service hotspots,Trade-off analysis,Coupling coordination degree, | en |
| dc.relation.page | 155 | - |
| dc.identifier.doi | 10.6342/NTU202503624 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
