Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺zh_TW
dc.contributor.advisorAn-Chi Weien
dc.contributor.author廖子言zh_TW
dc.contributor.authorTzu-Yen Liaoen
dc.date.accessioned2025-08-18T16:20:41Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Ahola S (2024), Editorial: Mitochondrial bioenergetics and metabolism: implication for human health and disease, Front. Mol. Biosci. 11:1468758, doi: 10.3389/fmolb.2024.1468758.
[2] Douglas R. Green, Guido Kroemer, The Pathophysiology of Mitochondrial Cell Death.Science305,626-629(2004). DOI:10.1126/science.1099320.
[3] Laura A. Sena, Navdeep S. Chandel, Physiological Roles of Mitochondrial Reactive Oxygen Species, Molecular Cell, Volume 48, Issue 2, 2012, Pages 158-167, ISSN 1097-2765.
[4] Nunnari, J., & Suomalainen, A. (2012). Mitochondria: In sickness and in health. Cell, 148(6), 1145–1159.
[5] Spinelli, J.B., Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20, 745–754 (2018).
[6] Lin, M., Beal, M. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).
[7] Bradford B. Lowell, Gerald I. Shulman, Mitochondrial Dysfunction and Type 2 Diabetes.Science307,384-387(2005).DOI:10.1126/science.1104343.
[8] Vyas, S., Zaganjor, E., & Haigis, M. C. (2016). Mitochondria and cancer. Cell, 166(3), 555–566
[9] Douglas C. Wallace, Mitochondrial Diseases in Man and Mouse.Science283,1482-1488(1999).DOI:10.1126/science.283.5407.1482.
[10] Richard J. Youle, Alexander M. van der Bliek, Mitochondrial Fission, Fusion, and Stress.Science337,1062-1065(2012). DOI:10.1126/science.1219855.
[11] Yu R, Lendahl U, Nistér M and Zhao J (2020) Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front. Endocrinol. 11:374. doi: 10.3389/fendo.2020.00374.
[12] Timothy Wai. Is mitochondrial morphology important for cellular physiology?. Trends in Endocrinology and Metabolism = Trends in Endocrinology & Metabolism , 2024, 35 (10), pp.854-871. ff10.1016/j.tem.2024.05.005ff.
[13] Shah SI, Paine JG, Perez C, Ullah G (2019) Mitochondrial fragmentation and network architecture in degenerative diseases. PLOS ONE 14(9): e0223014.
[14] Westrate LM, Drocco JA, Martin KR, Hlavacek WS, MacKeigan JP (2014) Mitochondrial Morphological Features Are Associated with Fission and Fusion Events. PLOS ONE 9(4): e95265.
[15] Knowlton, A.A. and Liu, T.T. (2016), Mitochondrial Dynamics and Heart Failure. Comprehensive Physiology, 6: 507-526.
[16] Lagos, D., de Santiago, P. R., Pérez, N., Cartes‑Saavedra, B., Vial‑Brizzi, J., Podmanicky, O., Horvath, R., & Eisner, V. (2025, April 4). Disease‑causing MFN2 mutants impair mitochondrial fission dynamics by distinct DRP1 dysregulation [Preprint]. bioRxiv.
[17] Fischer, Tara, "Mitochondrial Fission After Traumatic Brain Injury" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 807.
[18] Song, M., Mihara, K., Chen, Y., Scorrano, L., & Dorn, G. W., II. (2015). Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metabolism, 21(2), 273–286.
[19] Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M (2012) Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics. PLOS Computational Biology 8(10): e1002745.
[20] Tam, Z. Y., Gruber, J., Halliwell, B., & Gunawan, R. (2013). Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance. PLoS ONE, 8(10), e76230.
[21] Vessoni, A. T., Quinet, A., de Andrade‑Lima, L. C., Martins, D. J., Garcia, C. C. M., Rocha, C. R. R., Vieira, D. B., & Menck, C. F. M. (2016). Chloroquine‑induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress. Free Radical Biology and Medicine, 90, 91–100.
[22] Clemens, L., Kutuzov, M., Bayer, K. V., Goyette, J., Allard, J., & Dushek, O. (2021). Determination of the molecular reach of the protein tyrosine phosphatase SHP‑1. Biophysical Journal, 120(10), 2054–2066.
[23] Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015 Dec;47-48:62-73. doi: 10.1016/j.semcdb.2015.07.001. Epub 2015 Jul 9. PMID: 26165820.
[24] Kitano H. Computational systems biology. Nature. 2002 Nov 14;420(6912):206-10. doi: 10.1038/nature01254. PMID: 12432404.
[25] Naomi Oreskes et al. ,Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences.Science263,641-646(1994).DOI:10.1126/science.263.5147.641.
[26] Walpole J, Papin JA, Peirce SM. Multiscale computational models of complex biological systems. Annu Rev Biomed Eng. 2013;15:137-54. doi: 10.1146/annurev-bioeng-071811-150104. Epub 2013 Apr 29. PMID: 23642247; PMCID: PMC3970111.
[27] Yu JS, Bagheri N (2024) Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions. PLOS Computational Biology 20(3): e1011917.
[28] Viana, M. P., Brown, A. I., Mueller, I. A., Goul, C., Koslover, E. F., & Rafelski, S. M. (2020). Mitochondrial fission and fusion dynamics generate efficient, robust, and evenly distributed network topologies in budding yeast cells. Cell Systems, 10(3), 287–297.e5.
[29] Zamponi, N., Zamponi, E., Billoni, O. V., Cannas, S. A., Helguera, P. R., & Chialvo, D. R. (2018). Mitochondrial network complexity emerges from fission/fusion dynamics. Scientific Reports, 8, 363.
[30] Holt, K. B., Winter, J., Manley, S., & Koslover, E. F. (2024). Spatiotemporal modeling of mitochondrial network architecture. PRX Life, 2(4), 043002.
[31] Liesa, M., & Shirihai, O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism, 17(4), 491–506.
[32] Wang Z, Natekar P, Tea C, Tamir S, Hakozaki H, et al. (2023) MitoTNT: Mitochondrial Temporal Network Tracking for 4D live-cell fluorescence microscopy data. PLOS Computational Biology 19(4): e1011060.
[33] Hoffmann M, Fröhner C, Noé F (2019) ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics. PLOS Computational Biology 15(2): e1006830.
[34] Bi-Chang Chen et al. ,Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution.Science346,1257998(2014).DOI:10.1126/science.1257998.
[35] Richard J. Youle, Alexander M. van der Bliek ,Mitochondrial Fission, Fusion, and Stress.Science337,1062-1065(2012).DOI:10.1126/science.1219855.
[36] Chuphal, P., Lanctôt, J. D., Cornelius, S. P., & Brown, A. I. (2024, October 22). Mitochondrial network branching enables rapid protein spread with slower mitochondrial dynamics. PRX Life, 2(4), 043005.
[37] Krukowski, K., Nolan, A., Frias, E. S., Boone, M., Ureta, G., Grue, K., Paladini, M.-S., Elizarraras, E., Delgado, L., Bernales, S., Walter, P., & Rosi, S. (2020). Small molecule cognitive enhancer reverses age‑related memory decline in mice. eLife, 9, e62048.
[38] Erban, R., Chapman, J., & Maini, P. (2007, April 15). A practical guide to stochastic simulations of reaction‑diffusion processes (arXiv:0704.1908v2 [q‑bio.SC]). arXiv.
[39] Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012).
[40] Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD – Visual Molecular Dynamics. Journal of Molecular Graphics, 14(1), 33–38.
[41] Fogo, G. M., Torres Torres, F. J., Speas, R. L., Anzell, A. R., & Sanderson, T. H. (2025). Agent‑based modeling of neuronal mitochondrial dynamics using intrinsic variables of individual mitochondria. iScience, 28(5), Article 112390.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98750-
dc.description.abstract粒線體形成動態的絲狀網絡,其結構由融合和裂變之間的持續相互作用所塑造。
了解這些結構轉變如何隨時間和在不同細胞條件下演變仍然是粒線體生物學領域的關鍵挑戰。
在本研究中,我們提出了一個計算框架,該框架透過將基於粒子的擴散與結構和空間反應機制相結合來模擬粒線體網絡重塑。
該模型基於節點連通性和空間鄰近性,編碼了受生物學啟發的融合和裂變規則,使分支、伸長和碎片化等拓撲事件能夠隨著時間的推移自然發生。
此模擬系統由實驗影像產生的骨架圖初始化,並透過雙層反應方案演化:結構反應基於局部圖規則重建內部拓撲結構,而空間反應在滿足鄰近性標準時合併各個組件。
一系列詳細的輸出包括:粒子軌跡、拓撲檔案、反應日誌和度分佈:支援可視化和定量分析。
單次運行模擬揭示了網路複雜性的動態變化,例如端點頻率的增加和平均聚合物長度的減少。
對100次重複實驗進行多重運行統計平均,證明了度機率的穩健收斂性,並允許與實驗數據直接比較。
透過時序性顯微鏡影像的定量驗證,在對照組條件下表現出高度一致性,但在其他藥物如 FCCP 和 Mdivi-1 等條件下,會有誤差產生。這些結果表明,該模型雖然能捕捉粒線體重塑,但也指出了需要納入其他可能潛在的生物學機制,例如局部降解或生化回饋,才能獲得完全的準確性。
總體而言,此模擬平台為探索粒線體動力學提供了一個分析的工具,在實驗假設檢定、藥物反應建模和細胞能量學的系統級研究中具有應用價值。
zh_TW
dc.description.abstractMitochondria form dynamic, filamentous networks whose architecture is shaped by a continuous interplay between fusion and fission.
Understanding how these structural transformations evolve over time and under different cellular conditions remains a key challenge in mitochondrial biology.
In this study, we present a computational framework that simulates mitochondrial network remodeling by integrating particle-based diffusion with both structural and spatial reaction mechanisms.
The model encodes biologically inspired rules for fusion and fission based on node connectivity and spatial proximity, enabling topological events such as branching, elongation, and fragmentation to emerge naturally over time.
The simulation system is initialized from experimental image-derived skeleton graphs and evolves through a dual-layer reaction scheme:
Structural reactions restructure internal topology based on local graph rules, while spatial reactions merge separate components when proximity criteria are met.
A series of detailed outputs—including particle trajectories, topology files, reaction logs, and degree distributions, both visualization and quantitative analysis.
Single-run simulations reveal dynamic transitions in network complexity, such as increases in endpoint frequency and reductions in average polymer length.
Multi-run statistical averaging across 100 replicates demonstrates robust convergence of degree probabilities and allows for direct comparison with experimental data.
Quantitative verification of timing microscopy images showed high consistency under the control group conditions, but errors occurred under other drugs such as FCCP and Mdivi-1.
These results suggest that while capturing metaphysical remodeling, the model also points to the need to incorporate other possible potential biological mechanisms, such as local degradation or biochemical feedback, in order to achieve complete accuracy.
Overall, this simulation platform provides an analytical tool for exploring metasoma dynamics, with application value in systematic research on experimental hypothesis assays, drug response modeling, and cell energy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:20:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:20:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTABLE OF CONTENTS
口試委員會審定書 #
Acknowledgment i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xvi
Chapter 1: Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 7
1.3 Research Significance and Impact 16
1.4 Specific Aim 18
Chapter 2: Methods and Materials 20
2.1 ReaDDy2 Package Overview 20
2.2 Mitochondrial Dynamic Network Simulation Framework 43
2.3 Workflow Overview 46
2.4 Microscopy Image Extraction 50
2.5 Image Processing and Network Reconstruction 59
2.6 Simulation Workflow Overview 75
2.7 Visualization and Post-Simulation Validation 91
2.8 Quantitative Comparison with Experimental Data 102
Chapter 3: Results 107
3.1 Single-Run Simulation — Comprehensive Structural and Topological Analysis 107
3.2 Multi-Run Statistical Averaging — Reproducibility and Error Quantification 116
3.3 Results of Simulation–Experiment Validation 119
Chapter 4: Discussion 193
4.1 Fusion–Fission Reaction Architecture 193
4.2 Parameter Sensitivity and Biological Control Knobs 194
4.3 Emergent Topological Dynamics 195
4.4 Quantitative Validation Against Image‑Derived Data 195
4.5 Semi‑Synthetic Ground‑Truth for Tracking Validation 196
4.6 Contributions and Limitations 197
Chapter 5: Conclusion and Future Work 204
5.1 Overall Conclusions 204
5.2 Future Work 205
5.3 Final Remarks 208
REFERENCES 209
-
dc.language.isoen-
dc.subject粒線體動力學zh_TW
dc.subject融合-裂變zh_TW
dc.subject網路建模zh_TW
dc.subject基於粒子的模擬zh_TW
dc.subject反應擴散zh_TW
dc.subject結構拓撲zh_TW
dc.subjectReaDDy2zh_TW
dc.subject基於圖的生物學zh_TW
dc.subject基於影像的驗證zh_TW
dc.subject粒線體碎片化zh_TW
dc.subject基於代理的建模zh_TW
dc.subject系統生物物理學zh_TW
dc.subjectimage-based validationen
dc.subjectstructural topologyen
dc.subjectReaDDy2en
dc.subjectmitochondrial fragmentationen
dc.subjectgraph-based biologyen
dc.subjectMitochondrial dynamicsen
dc.subjectfusion–fissionen
dc.subjectnetwork modelingen
dc.subjectparticle-based simulationen
dc.subjectreaction-diffusionen
dc.subjectsystems biophysicsen
dc.subjectagent-based modelingen
dc.title基於ReaDDy2的粒線體裂變-融合動力學反應擴散模型zh_TW
dc.titleReaDDy2-based Reaction-Diffusion Model for Mitochondrial Fission-Fusion Dynamicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉彥良;何亦平;游舒涵zh_TW
dc.contributor.oralexamcommitteeYen-Liang Liu;Yi-Ping Ho;Shu-Han Yuen
dc.subject.keyword粒線體動力學,融合-裂變,網路建模,基於粒子的模擬,反應擴散,結構拓撲,ReaDDy2,基於圖的生物學,基於影像的驗證,粒線體碎片化,基於代理的建模,系統生物物理學,zh_TW
dc.subject.keywordMitochondrial dynamics,fusion–fission,network modeling,particle-based simulation,reaction-diffusion,structural topology,ReaDDy2,graph-based biology,image-based validation,mitochondrial fragmentation,agent-based modeling,systems biophysics,en
dc.relation.page213-
dc.identifier.doi10.6342/NTU202503815-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf8.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved