請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宜芳 | zh_TW |
| dc.contributor.advisor | Yi-Fang Tsay | en |
| dc.contributor.author | 蘇宗柏 | zh_TW |
| dc.contributor.author | Tsung-Po Su | en |
| dc.date.accessioned | 2025-08-18T16:20:12Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Alvarez, J. M., Schinke, A. L., Brooks, M. D., Pasquino, A., Leonelli, L., Varala, K., Safi, A., Krouk, G., Krapp, A., Coruzzi, G. M. (2020). Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nature Communications, 11(1), 1157.
Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet‐Mercey, S., Boutet-Mercey, S., Taconnat, L., Renou, J. P., Daniel-Vedele, F., Fernandez, E., Meyer, C., Krapp, A. (2009). The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal, 57(3), 426-435. Chardin, C., Girin, T., Roudier, F., Meyer, C., & Krapp, A. (2014). The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 65(19), 5577-5587. Cheng, Y. H., Durand, M., Brehaut, V., Hsu, F. C., Kelemen, Z., Texier, Y., Krapp, A., Tsay, Y. F. (2023). Interplay between NIN-LIKE PROTEINs 6 and 7 in nitrate signaling. Plant Physiology, 192(4), 3049-3068. Durand, M., Brehaut, V., Clement, G., Kelemen, Z., Macé, J., Feil, R., Duville, G., Launay-Avon, A., Paysant-Le-Roux, C., Lunn, J. E., Roudier, F., Krapp, A. (2023). The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. The Plant Cell, 35(5), 1429-1454. Ferris, P. J., Goodenough, U. W. (1997). Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics, 146(3), 859-869. Hernández-Reyes, C., Lichtenberg, E., Keller, J., Delaux, P. M., Ott, T., Schenk, S. T. (2022). NIN-like proteins: interesting players in rhizobia-induced nitrate signaling response during interaction with non-legume host Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 35(3), 230-243. Ho, C. H., Lin, S. H., Hu, H. C., Tsay, Y. F. (2009). CHL1 functions as a nitrate sensor in plants. Cell, 138(6), 1184-1194. Konishi, M., & Yanagisawa, S. (2019). The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biology, 19, 1-12. Konishi, M., Okitsu, T., Yanagisawa, S. (2021). Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. Journal of Experimental Botany, 72(15), 5735-5750. Krapp, A. (2015). Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology, 25, 115-122. Krouk, G., Ruffel, S., Gutiérrez, R. A., Gojon, A., Crawford, N. M., Coruzzi, G. M., Lacombe, B. (2011). A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 16(4), 178-182. Lin, Y. L., Tsay, Y. F. (2017). Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. Journal of Experimental Botany, 68(10), 2603-2609. Liu, Y., von Wirén, N. (2017). Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany, 68(10), 2581-2592. Medici, A., Krouk, G. (2014). The primary nitrate response: a multifaceted signaling pathway. Journal of Experimental Botany, 65(19), 5567-5576. Mu, X., Luo, J. (2019). Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling. Cellular and Molecular Life Sciences, 76(19), 3753-3764. O'Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., Gutiérrez, R. A. (2016). Nitrate transport, sensing, and responses in plants. Molecular Plant, 9(6), 837-856. Patterson, K., Cakmak, T., Cooper, A., Lager, I. D. A., Rasmusson, A. G., Escobar, M. A. (2010). Distinct signaling pathways and transcriptome response signatures differentiate ammonium‐ and nitrate‐supplied plants. Plant, Cell & Environment, 33(9), 1486-1501. Sakuraba, Y., Zhuo, M., & Yanagisawa, S. (2022). RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. Journal of Experimental Botany, 73(13), 4323-4337. Schauser, L., Roussis, A., Stiller, J., Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature, 402(6758), 191-195. Schauser, L., Wieloch, W., Stougaard, J. (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. Journal of Molecular Evolution, 60, 229-237. Tsay, Y. F. (2014). How to switch affinity. Nature, 507(7490), 44-45. Tsay, Y. F., Chiu, C. C., Tsai, C. B., Ho, C. H., Hsu, P. K. (2007). Nitrate transporters and peptide transporters. FEBS Letters, 581(12), 2290-2300. Vidal, E. A., Álvarez, J. M., Moyano, T. C., Gutiérrez, R. A. (2015). Transcriptional networks in the nitrate response of Arabidopsis thaliana. Current Opinion in Plant Biology, 27, 125-132. Wang, Y. Y., Cheng, Y. H., Chen, K. E., Tsay, Y. F. (2018). Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology, 69(1), 85-122. Wu, Z., Liu, H., Huang, W., Yi, L., Qin, E., Yang, T., Wang, J., Qin, R. (2020). Genome-wide identification, characterization, and regulation of RWP-RK gene family in the nitrogen-fixing clade. Plants, 9(9), 1178. Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi YM, Provart N, Guttman D, Krapp A, Rothstein SJ, Nambara E. (2016). NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature Communications, 7(1), 13179. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98748 | - |
| dc.description.abstract | 硝酸鹽和銨鹽是植物生長發育的氮源與訊息分子。在硝酸鹽和銨鹽所誘發的轉錄反應中,轉錄因子 NLP (NIN-LIKE PROTEIN) 扮演重要角色。最近研究發現序列相近的 NLP6 和 NLP7 在硝酸鹽反應是功能部分重疊的正調控因子,且在銨鹽反應是功能完全重疊的負調控因子。然而,其他 7 個 NLP 蛋白之間的關係尚待釐清。在序列相近的 nlp 雙突變株中,只有 nlp1nlp2 和 nlp6nlp7 在硝酸鹽有生長遲緩,而 nlp4nlp5 和 nlp8nlp9 的生長和野生型相近,顯示 NLP1 與 NLP2 的關係可能和 NLP6 與 NLP7 相似。因此,本研究的目的是探討 NLP1 和 NLP2 在硝酸鹽訊息傳遞和銨鹽訊息傳遞的功能。對於調控生長,NLP2 在低硝酸鹽時的功能比 NLP1 更重要,而 NLP1 和 NLP2 在高硝酸鹽時有些相加 (additive) 的關係;NLP2 和 NLP7 在低硝酸鹽和高硝酸鹽時都有相乘 (synergistic) 的關係,而 NLP2 和 NLP7 在銨鹽時的功能重疊。對於調控基因表現,NLP2 正向調控 HYH、BEE2、ERF60、LBD38、MAPKKK14、ZAT1、UMAMIT36、At1g22170 和 PRS2 的高硝酸鹽誘導轉錄,而 NLP1 對這些基因的貢獻較少或是沒有貢獻。在銨鹽時,nlp2nlp7 的轉錄反應和 nlp6nlp7 雙基因剔除突變株 (double knockout mutant) 相似,顯示 NLP2/7 和 NLP6/7 負向調控一樣的銨鹽反應基因的轉錄。對於細胞內的分布,NLP1 和 NLP2 在硝酸鹽的條件下可能分布於細胞質,而 NLP1 和 NLP2 在銨鹽的條件下都分布於細胞質和細胞核。有趣的是,NLP2/7 和 NLP6/7 在高硝酸鹽負向調控地上部的硝酸鹽濃度,並正向調控地上部硝酸還原酶的活性。總結來說,NLP2 在硝酸鹽反應是正調控因子,而 NLP1 的貢獻比 NLP2 微弱。NLP2 和 NLP7 在銨鹽反應是功能可互相取代的負調控因子,而 NLP1 的功能並不明顯。 | zh_TW |
| dc.description.abstract | Nitrate and ammonium are two major nitrogen sources and signal molecules for plant growth and development. Transcription factors NLPs (NIN-LIKE PROTEINs) play important roles in the transcriptional response which is induced by nitrate and ammonium. Recent studies have showed that NLP6 and NLP7 in the same clade were partially functionally redundant activators in the nitrate response and completely functionally redundant repressors in the ammonium response. However, the relationship of other 7 NLPs remains to be elucidated. Among the nlp double mutants in the same clade, only nlp1nlp2 and nlp6nlp7 displayed growth retardation under nitrate, but the growth of nlp4nlp5 and nlp8nlp9 was similar to the wild type, indicating that the relationship between NLP1 and NLP2 may be similar to NLP6 and NLP7. Therefore, the function of NLP1 and NLP2 is investigated in the nitrate signaling and ammonium signaling in this study. For growth regulation, the function of NLP2 is more important than NLP1 under low nitrate. There are some additive effects between NLP1 and NLP2 under high nitrate. The relationship of NLP2 and NLP7 is synergistic under low nitrate and high nitrate conditions, but is functionally redundant under ammonium. For gene regulation, NLP2 positively regulates the high nitrate-induced transcription of HYH, BEE2, ERF60, LBD38, MAPKKK14, ZAT1, UMAMIT36, At1g22170 and PRS2, but NLP1 contributes little or no to these genes. Under ammonium, the transcriptional response of nlp2nlp7 is similar to nlp6nlp7 double knockout mutant. NLP2/7 and NLP6/7 negatively regulate transcription of the same ammonium-responsive genes. For intracellular localization, NLP1 and NLP2 may localize to the cytosol under nitrate condition, and localize to the cytosol and nucleus under ammonium condition. Interestingly, NLP2/7 and NLP6/7 negatively regulate shoot nitrate concentration and positively regulate shoot nitrate reductase activity under high nitrate. In summary, NLP2 is an activator in the nitrate response, but the contribution of NLP1 is weaker than NLP2. NLP2 and NLP7 are repressors which can functionally replace each other in the ammonium response, but the function of NLP1 is not clear. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:20:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:20:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii 英文摘要 (Abstract) iv 目次 vi 圖次 ix 第一章 前言 (Introduction) 1 1.1 硝酸鹽和銨鹽是植物的氮源 1 1.2 硝酸鹽和銨鹽是植物的訊息 1 1.3 Nodule-inception like protein (NLP) 家族 2 1.4 研究目的 3 第二章 實驗材料與方法 (Materials and methods) 4 2.1 植物材料 (plant materials) 4 2.2 植物培養液與生長條件 (plant growth medium and growth conditions) 4 2.3 植物鮮重分析 (plant fresh weight assay) 6 2.4 硝酸鹽含量分析 (nitrate content assay) 6 2.5 硝酸還原酶活性分析 (nitrate reductase activity assay) 6 2.6 初期硝酸鹽反應 (primary nitrate response, PNR) 8 2.7 基因表現分析 (gene expression assay) 8 2.8 細胞內蛋白質位置分析 (protein localization assay) 11 2.9 統計分析 (statistical analysis) 13 第三章 結果 (Results) 14 3.1 NLP1 和 NLP2 在硝酸鹽反應的角色 14 3.1.1 NLP1、NLP2、NLP6 和 NLP7 影響植物在硝酸鹽的生長 14 3.1.2 NLP1/2 在高硝酸鹽對生長有些相加的影響,而 NLP2/7 在低和高硝酸鹽對生長有相乘的影響 14 3.1.3 NLP2/7 一起比 NLP6/7 一起更明顯負向調控地上部的硝酸鹽濃度 15 3.1.4 NLP2/7 一起和 NLP6/7 一起正向調控地上部的硝酸還原酶活性 16 3.1.5 NLP1 和 NLP2 參與低親和性的初期硝酸鹽反應 16 3.1.6 NLP1 和 NLP2 可能在有硝酸鹽時存在於細胞質 18 3.2 NLP1 和 NLP2 在銨鹽反應的角色 18 3.2.1 NLP2 和 NLP7 對銨鹽的生長有重疊的影響 18 3.2.2 NLP2/7 一起和 NLP6/7 一起負向調控一樣的銨鹽反應基因的轉錄 19 3.2.3 NLP1 和 NLP2 在有銨鹽時存在於細胞質和細胞核 20 第四章 討論 (Discussion) 21 4.1 NLP1 只影響低硝酸鹽時的生長,而 NLP2 影響低和高硝酸鹽時的生長 21 4.2 NLP1/2 在高硝酸鹽有些相加的關係,而 NLP2/7 在低和高硝酸鹽有相乘的關係 21 4.3 NLP2/7 和 NLP6/7 影響地上部的硝酸鹽利用 22 4.4 NLP2 和 NLP7 在硝酸鹽反應是正調控因子,而 NLP1 可能也參與其中 22 4.5 NLP2 和 NLP7 在銨鹽反應是功能重疊的負調控因子 23 4.6 NLP2 和 NLP6 可能得互相結合或與 NLP7 形成異二聚體才能調控銨鹽反應基因的表現 24 第五章 圖表 (Figures and tables) 26 第六章 參考文獻 (References) 45 第七章 附錄 (Appendices) 49 圖次 第五章 圖表 (Figures and tables) 26 圖一、nlp1nlp2 和 nlp6nlp7 在硝酸鹽有生長遲緩 26 圖二、nlp1nlp2 在高硝酸鹽有些相加的生長遲緩,而 nlp2nlp7 在低和高硝酸鹽有相乘的生長遲緩 28 圖三、nlp2nlp7 在高硝酸鹽的地上部硝酸鹽濃度增加比 nlp6nlp7 多 30 圖四、nlp2nlp7 和 nlp6nlp7 在高硝酸鹽的地上部硝酸還原酶活性降低 31 圖五、NLP2 參與低親和性的初期硝酸鹽反應 32 圖六、NLP1 和 NLP2 在有硝酸鹽的環境中可能分布於細胞質 38 圖七、nlp2nlp7 和 nlp6nlp7 在銨鹽有生長遲緩 39 圖八、NLP2/7 和 NLP6/7 負向調控一樣的銨鹽反應基因的轉錄 41 圖九、NLP1 和 NLP2 在有銨鹽的環境中分布於細胞質和細胞核 44 第七章 附錄 (Appendices) 49 附圖一、nlp 突變株是剔除突變株 49 附圖二、NLP2 可透過二次轉錄因子調控 NLP2 下游的硝酸鹽誘導基因 55 附圖三、有些 NLP2 下游的硝酸鹽誘導基因不受 NLP7 調控 56 附圖四、NLP1 和 NLP2 不調控 NIA1 和 NIA2 的初期硝酸鹽反應 57 附圖五、NLP1 和 NLP2 互不調控彼此的初期硝酸鹽反應 59 附圖六、細胞內蛋白質位置分析所用的質體之圖譜 60 附圖七、NLP2 可以結合 NLP7 直接調控的銨鹽反應基因 62 附圖八、NLP2 和 NLP7 在銨鹽反應基因的啟動子有重疊的結合位 63 附圖九、阿拉伯芥 NLP 蛋白家族的演化樹 64 附圖十、阿拉伯芥 NLP1 和 NLP2 的胺基酸序列比對 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | NLP 蛋白家族 | zh_TW |
| dc.subject | 基因調控 | zh_TW |
| dc.subject | 初期硝酸鹽反應 | zh_TW |
| dc.subject | 功能重疊 | zh_TW |
| dc.subject | functionally redundant | en |
| dc.subject | primary nitrate response | en |
| dc.subject | gene regulation | en |
| dc.subject | transcription factor | en |
| dc.subject | NLP protein family | en |
| dc.title | 阿拉伯芥 NLP1/2 在硝酸鹽與銨鹽反應中的角色 | zh_TW |
| dc.title | The role of AtNLP1/2 in the nitrate and ammonium response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡皇龍;吳克強 | zh_TW |
| dc.contributor.oralexamcommittee | Huang-Lung Tsai;Ke-Qiang Wu | en |
| dc.subject.keyword | NLP 蛋白家族,轉錄因子,功能重疊,初期硝酸鹽反應,基因調控, | zh_TW |
| dc.subject.keyword | NLP protein family,transcription factor,functionally redundant,primary nitrate response,gene regulation, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202503701 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
