請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳維婷 | zh_TW |
| dc.contributor.advisor | Wei-Ting Chen | en |
| dc.contributor.author | 薛皓薰 | zh_TW |
| dc.contributor.author | Hao-Hsun Hsueh | en |
| dc.date.accessioned | 2025-08-18T16:19:27Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Chen, C., & Chen, Y. (2003). The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323–1341. https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2
Chen, C.-S., Lin, C.-Y., Chuang, Y.-J., & Yeh, H.-C. (2002). A study of afternoon heavy rainfall in Taiwan during the mei-yu season. Atmospheric Research, 65(1–2), 129–149. https://doi.org/10.1016/S0169-8095(02)00061-3 Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 Chen, W. T., Chang, Y. H., Wu, C. M., & Huang, H. Y. (2024). The future extreme precipitation systems of orographically locked diurnal convection: The benefits of using large-eddy simulation ensembles. Environmental Research: Climate, 3(3), 035008. https://doi.org/10.1038/s41612-024-00516-3 Dellaripa, R., Maloney, E. D., Toms, B. A., Saleeby, S. M., & van den Heever, S. C. (2020). Topographic effects on the Luzon diurnal cycle during the BSISO. Journal of the Atmospheric Sciences, 77(1), 3–30. https://doi.org/10.1175/JAS-D-19-0046.1 Doswell III, C. A. (2001). Severe convective storms—An overview. In C. A. Doswell III (Ed.), Severe convective storms (pp. 1–26). American Meteorological Society. https://doi.org/10.1007/978-1-935704-06-5_1 Hassim, M. E. E., Lane, T. P., & Grabowski, W. W. (2016). The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations. Atmospheric Chemistry and Physics, 16(1), 161–175. https://doi.org/10.5194/acp-16-161-2016 Henneberg, O., Meyer, B., & Haerter, J. O. (2020). Particle-based tracking of cold pool gust fronts. Journal of Advances in Modeling Earth Systems, 12(5), e2019MS001910. https://doi.org/10.1029/2019MS001910 Houze Jr, R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(1). https://doi.org/10.1029/2011RG000365 Ichikawa, H., & Yasunari, T. (2008). Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. Journal of Climate, 21(12), 2852–2868. https://doi.org/10.1175/2007JCLI1784.1 Kuo, K.-T., & Wu, C.-M. (2019). The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. Journal of the Meteorological Society of Japan, 97(2), 501–517. https://doi.org/10.2151/jmsj.2019-031 Lin, C. Y., & Chen, C. S. (2002). A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorology and Atmospheric Physics, 81, 1–25. https://doi.org/10.1007/s007030200028 Lin, L. Y., Lin, C. T., Chen, Y. M., Cheng, C. T., Li, H. C., & Chen, W. B. (2022). The Taiwan climate change projection information and adaptation knowledge platform: A decade of climate research. Water, 14(3), 358. https://doi.org/10.3390/w14030358 Lin, P. F., Chang, P. L., Jou, B. J. D., Wilson, J. W., & Roberts, R. D. (2011). Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and Forecasting, 26(1), 44–60. https://doi.org/10.1175/2010WAF2222386.1 林熹閔、郭鴻基(1996)。1994年南臺灣夏季午後對流之研究。大氣科學,24(3–4),249–280。https://www.airitilibrary.com/Article/Detail?DocID=02540002-199612-201404140003-201404140003-249-280 Miao, J. E., & Yang, M. J. (2022). The impacts of midlevel moisture on the structure, evolution, and precipitation of afternoon thunderstorms: A real-case modeling study at Taipei on 14 June 2015. Journal of the Atmospheric Sciences, 79(7), 1837–1857. https://doi.org/10.1175/JAS-D-21-0257.1 Morrison, H., & Milbrandt, J. A. (2015). Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Journal of the Atmospheric Sciences, 72(1), 287–311. https://doi.org/10.1175/JAS-D-14-0065.1 Mori, S., Hamada, J.-I., Tauhid, Y. I., Yamanaka, M. D., Okamoto, N., Murata, F., … & Sribimawati, T. (2004). Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Monthly Weather Review, 132(8), 2021–2039. https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2 Chen, P. Y., & Wu, C. M. (2025). Identifying cold pool scales over complex topography using TaiwanVVM simulations. Journal of the Meteorological Society of Japan, 103(2). https://doi.org/10.2151/jmsj.2025-023 Qian, J. H. (2008). Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of the Atmospheric Sciences, 65(4), 1428–1441. https://doi.org/10.1175/2007JAS2422.1 Rotunno, R., Klemp, J. B., & Weisman, M. L. (1988). A Theory for Strong, Long-Lived Squall Lines. Journal of Atmospheric Sciences, 45(3), 463-485. https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2 Shutts, G. J., & Gray, M. E. B. (1994). A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly Journal of the Royal Meteorological Society, 120(519), 1145–1178. https://doi.org/10.1002/qj.49712051903 Su, S.-H., Chu, J.-L., Yo, T.-S., & Lin, L.-Y. (2022). Taiwan Atmospheric Event Database (TAD) [Data set]. Research Center for Environmental Changes, Academia Sinica. https://osf.io/4zutj/ Tompkins, A. M. (2001a). Organization of tropical convection in low vertical wind shears: The role of cold pools. Journal of the Atmospheric Sciences, 58(13), 1650–1672. https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2 Tompkins, A. M. (2001b). Organization of tropical convection in low vertical wind shears: The role of water vapor. Journal of the Atmospheric Sciences, 58(6), 529–545. https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2 Tsujino, S., Kuo, H.-C., Yu, H., Chen, B.-F., & Tsuboki, K. (2021). Effects of mid-level moisture and environmental flow on the development of afternoon thunderstorms in Taipei. Terrestrial, Atmospheric and Oceanic Sciences, 32(4). https://doi.org/10.3319/TAO.2021.11.17.01 Wang, Y. H., Chen, W. T., & Wu, C. M. (2024). Novel perspectives on multiple-peak diurnal convection over a tropical mountainous island from idealized large-eddy simulations. npj Climate and Atmospheric Science, 7(1), 325. https://doi.org/10.1038/s41612-024-00884-y Wu, C. M., & Arakawa, A. (2011). Inclusion of surface topography into the vector vorticity equation model (VVM). Journal of Advances in Modeling Earth Systems, 3(2). https://doi.org/10.1029/2011MS000061 Wu, C. M., Lin, H. C., Cheng, F. Y., & Chien, M. H. (2019). Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701–717. https://doi.org/10.1007/s13143-019-00116-x Zhu, L., Bai, L., Chen, G., Sun, Y. Q., & Meng, Z. (2021). Convection initiation associated with ambient winds and local circulations over a tropical island in South China. Geophysical Research Letters, 48(16), e2021GL094382. https://doi.org/10.1029/2021GL094382 Zhu, L., Chen, X., & Bai, L. (2020). Relative roles of low-level wind speed and moisture in the diurnal cycle of rainfall over a tropical island under monsoonal flows. Geophysical Research Letters, 47(8), e2020GL087467. https://doi.org/10.1029/2020GL087467 TTSB(飛航安全調查委員會). (2024). 臺灣飛航安全統計報告(2014–2023年). https://www.ttsb.gov.tw/media/7852/%E5%8F%B0%E7%81%A3%E9%A3%9B%E5%AE%89%E7%B5%B1%E8%A8%88%E5%A0%B1%E5%91%8A2014-2023.pdf | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98745 | - |
| dc.description.abstract | 嘉義地區夏季午後對流常迅速發展,對飛航安全構成潛在威脅,常伴隨能見度驟降、跑道積水與風切等現象。觀測與研究指出,該區對流系統受地形加熱、海陸風輻合與中層風場調節等因素共同影響。然而,現行預報作業對對流觸發與演變機制掌握不足,難以因應具操作性的短時預警需求。本研究運用有高解析度(500 m)臺灣真實地表狀況與地形高度資料之渦度向量方程雲解析模式(TaiwanVVM),分析62組弱綜觀條件模擬中嘉義地區的午後對流發展過程,並建立一套分類與診斷架構。首先以嘉義機場方框內降雨強度達3 mm/hr且覆蓋範圍逾13 km²為條件,篩選出44組具降水事件的模擬個案,進一步針對其中15組850 hPa為西南風背景者進行詳細分類。根據模擬對流觸發與移動特性,本研究將其歸類為「單觸發」與「雙觸發」兩類型事件。前者由海風與坡面風輻合所觸發,對流活動集中於午後初期、壽命短、降雨熱區偏嘉義平原西側;後者則於午前至午後初期生成第一波對流,午後再因冷池推展誘發第二波對流,降雨範圍向東延伸至丘陵地帶,呈現2–3小時的雙階段演變結構。診斷分析指出,700 hPa中層風場為分類關鍵:穩定西南風有利海風推進並對應單觸發事件;而雙觸發事件常伴隨中層弱風或東風,有利冷池發展與午後再對流。此外,雙觸發事件中的冷池強度與推展範圍普遍高於單觸發事件,並與中層回流層結構共同幫助對流維持與提供再觸發的條件,顯示此類午後對流發展需整合冷池、風場與海風推進等多項因素進行判識。本研究據此建構具物理意義之對流分類架構與早期診斷指標,整合海風推進深度、中層風場型態與冷池特性,可應用於嘉義機場午後對流之短時預警作業。研究結果補強作業經驗模型之物理依據,亦提供後續發展即時守視工具的基礎。未來建議納入東風背景或無降水個案,並結合雷達、衛星與地面觀測進行驗證,以提升模式應用廣度與實務預測效能。 | zh_TW |
| dc.description.abstract | Afternoon convective systems in the Chiayi region often develop rapidly during summer, posing potential threats to aviation safety, such as sudden drops in visibility, runway flooding, and wind shear. Observational and modeling studies have shown that the development of these systems is jointly influenced by terrain-induced heating, land–sea breeze convergence, and mid-level wind modulation. However, current operational forecasts have limited capability in capturing the triggering mechanisms and evolution patterns of convection, making it difficult to support short-term early warning needs. This study analyzed the simulations of the TaiwanVVM model—a cloud-resolving model based on the vector vorticity equation and configured with 500-meter resolution and realistic Taiwanese topography and land conditions. From the 62 simulated cases under weak synoptic condition, the objective is to reconstruct the evolution of afternoon convection over the Chiayi region and establish a physically grounded classification and diagnostic framework. Using a threshold of rainfall intensity ≥ 3 mm/hr and coverage ≥ 13 km² within the Chiayi Airport domain, 44 convective cases were identified. Among these, 15 cases with 850 hPa southwesterly background flow were selected for further classification. Based on convective initiation and propagation characteristics in the simulations, cases were categorized into two types: single-trigger and dual-trigger. The former are initiated by convergence between sea breezes and upslope winds, with short-lived convection occurring during the early afternoon and rainfall concentrated over the western Chiayi Plain. In contrast, dual-trigger events exhibit a first convective episode before or shortly after noon, followed by a second wave of convection in the afternoon triggered by cold pool propagation, with rainfall extending eastward toward the hill regions and a typical interval of 2–3 hours between the two stages. Diagnostic results reveal that the 700 hPa wind field serves as a key classification factor. Stable southwesterly flow favors inland sea-breeze penetration and is associated with single-trigger events, while dual-trigger cases commonly occur under weak or easterly mid-level flow, which promotes cold pool development and secondary convection. Moreover, dual-trigger events generally feature stronger and more extensive cold pool structures, which, with the return flow layer at mid-levels, enhance convective maintenance and re-initiation. These findings suggest that the dual-trigger events need to be interpreted through the combined influence of cold pools, wind fields, and sea-breeze dynamics. Based on these results, this study proposes a physically meaningful classification system and early-stage diagnostic indicators that integrate sea-breeze depth, mid-level wind patterns, and cold pool characteristics. The framework has potential applications in short-term convective nowcasting for the Chiayi Airport. It also strengthens the physical foundation of empirical operational models and supports the future development of real-time monitoring tools. Future work may extend to include easterly background flow or non-precipitating cases, and incorporate radar, satellite, and surface observations for further model validation and enhancement of practical forecasting capabilities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:19:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:19:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 中文摘要 ii Abstract iv 目次 vii 圖次 x 1 前言 1 2 文獻回顧、背景介紹與研究目的 3 2.1 熱帶島嶼午後對流之特徵與調控機制 3 2.2 臺灣地區午後對流活動之環境背景與演變特性 5 2.3 嘉南平原午後對流活動之空間分布與氣象特徵回顧 7 2.4 研究目的 9 2.4.1 複雜地形對流之環境特徵及主要關鍵物理過程 9 2.4.2 嘉義機場午後對流守視經驗既有概念模型與作業參採依據 11 2.4.3 研究目的及科學問題 12 3 研究方法 15 3.1 TaiwanVVM雲解析模式 15 3.2 TaiwanVVM半理想化模擬系集 17 3.3 個案篩選標準與分類架構建立 20 4 結果 23 4.1 嘉義機場有降水與無降水模擬個案之整體分析 23 4.2 嘉南平原在西南風與非西南風背景下降雨特性之比對分析 25 4.3 嘉義機場在西南風背景下之個案分類與特徵分析 27 4.3.1 個案分類邏輯與標準 27 4.3.2 「單觸發」與「雙觸發」型個案之降雨分布比較 28 4.3.3 「單觸發」與「雙觸發」型個案之降雨時序Hovmöller特徵 28 4.4 「單觸發」與「雙觸發」降雨個案分群之環境條件演變差異 30 4.4.1 初始熱力及動力條件比較 30 4.4.2 海風與降雨分布及時間的關聯 32 4.4.3 冷池觸發對流時間與環境交互作用之差異性分析 33 4.5 新的概念模型建構與降雨守視參採依據之提出 37 4.5.1 「單觸發」降雨事件概念模型 37 4.5.2 「雙觸發」降雨事件概念模型 38 4.5.3 降雨預報合成統計分析 40 5 討論 42 5.1 討論本研究所分析個案在涵蓋的環境種類上的限制 42 5.2 利用過往觀測資料驗證概念模型的可信度 43 5.3 再觸發對流機制是否為冷池驅動對流之探討 45 6 結論 51 參考文獻 54 圖 57 附錄 A個案列表 105 附錄 B模式初始場與0800時嘉義機場模擬探空對照表 109 附錄 C VVM及TaiwanVVM相關研究列表 117 附錄 D 非西南風個案比較圖 144 附錄 E 專有名詞中英對照表 147 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 大渦模擬 | zh_TW |
| dc.subject | 午後對流 | zh_TW |
| dc.subject | 中層風場 | zh_TW |
| dc.subject | 弱綜觀環境 | zh_TW |
| dc.subject | TaiwanVVM | zh_TW |
| dc.subject | TaiwanVVM | en |
| dc.subject | Weak synoptic environment | en |
| dc.subject | Mid-level wind | en |
| dc.subject | Large-eddy simulation | en |
| dc.subject | Afternoon convection | en |
| dc.title | 以TaiwanVVM大渦模擬系集建立嘉義地區午後對流之預警前兆 | zh_TW |
| dc.title | Establishing Early Warning Precursors for Afternoon Convection in the Chiayi Area Using TaiwanVVM Large-Eddy Simulation Ensemble | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳健銘;宋偉國;侯昭平;張林裕豐 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Ming Wu;Wei-Kuo Soong;Jou-Ping Hou;Yu-Feng Chang Lin | en |
| dc.subject.keyword | 午後對流,大渦模擬,TaiwanVVM,弱綜觀環境,中層風場, | zh_TW |
| dc.subject.keyword | Afternoon convection,Large-eddy simulation,TaiwanVVM,Weak synoptic environment,Mid-level wind, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202504196 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 69.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
