請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王建凱 | zh_TW |
| dc.contributor.advisor | Chien-Kai Wang | en |
| dc.contributor.author | 呂季鴻 | zh_TW |
| dc.contributor.author | Chi-Hung Lu | en |
| dc.date.accessioned | 2025-08-18T16:18:14Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] Frahm, H. (1911). Device for damping vibrations of bodies (U.S. Patent No. 989,958). U.S. Patent and Trademark Office.Den Hartog JP. Mechanical Vibrations. 4th. New York: McGraw-Hill; 1956.
[2] Den Hartog, J. P. (1956). Mechanical Vibrations (4th ed.). New York: McGraw Hill.Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401. [3] Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401. [4] Sadek, F., Mohraz, B., Taylor, A. W., & Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering and Structural Dynamics, 26(6), 617–635. [5] 張洪閔(2021)。以直接輸出回饋與參數更新迴代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器(碩士論文,國立中央大學土木工程學系)。 [6] Chang, J. C. H., & Soong, T. T. (1980). Structural control using active tuned mass dampers. Journal of Engineering Mechanics, 106(6), 1091–1098. [7] Yang, J. N. (1987). New optimal control algorithms for structural control. Journal of Engineering Mechanics, 113(9), 1369–1386. [8] Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K., & Ohrui, S. (1992). Active tuned mass damper. Smart Materials and Structures, 1(4), 306–311. [9] Lai, Y. A., Luo, W. C., Huang, S. K., Yang, C. Y., & Chang, C. M. (2022). Seismic control of structure with phase control active tuned mass damper. Structural Control and Health Monitoring, 29(7), e2946. [10] Chung, L. L., Lin, C. C., & Chu, S. Y. (1993). Optimal direct output feedback of structural control. Journal of Engineering Mechanics, 119(11), 2157–2173. [11] Lewis, F. L., Vrabie, D. L., & Syrmos, V. L. (2012). Optimal Control (3rd ed.). New York: John Wiley & Sons. [12] Hamdan, H., Dol, S. S., Gomaa, A. H., Tahhan, A. B. A., Al Ramahi, A., Turkmani, H. F., Alkhedher, M., & Ajaj, R. (2024). Experimental and numerical study of novel vortex bladeless wind turbine with an economic feasibility analysis and investigation of environmental benefits. Energies, 17(1), 214. [13] Zhang, Y., Jin, Y., & Li, Y. (2021). Enhanced energy harvesting using time delayed feedback control from random rotational environment. Physica D: Nonlinear Phenomena, 425, 132908. [14] 施宣安(2018)。多方向振動能量採集器之設計與分析(碩士論文)。國立台灣大學機械工程學研究所。DOI:10.6342/NTU201801823 [15] Liou, D. S. (2009). Development and research on Lego-type modular components for the application of microfluidic chips (Doctoral dissertation, National Taiwan University). DOI:10.6342/NTU.2009.01479 [16] 黃文峸(2024)。樂高層光顯微鏡研製於試件微變形量測與分析之應用(碩士論文)。國立臺灣大學機械工程學研究所。DOI:10.6342/NTU202401842 [17] Gawthrop, P. J., & McGookin, E. (2004). A LEGO based control experiment. IEEE Control Systems Magazine, 24(5), 43–56. [18] Challa, V. R., Prasad, M. G., Shi, Y., & Fisher, F. T. (2008). A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 17(1), 015035. [19] 蔡昌旻(2017)。結構最佳設計力學於對應系統動力尖峰反應之極限載重研究(碩士論文)。淡江大學土木工程學系。DOI:10.6846/TKU.2017.01007 [20] Celli, P., & Gonella, S. (2015). Manipulating waves with LEGO® bricks: A versatile experimental platform for metamaterial architectures. arXiv. [21] Bendsoe, M. P., & Sigmund, O. (2004). Topology optimization: Theory, methods, and applications (2nd ed.). [22] Krog, L. A., & Olhoff, N. (1999). Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Computers & Structures, 72(4), 535–563. [23] Semblat, J. F., & Pecker, A. (2009). Waves and vibrations in soils: Earthquakes, traffic, shocks, construction works. IUSS Press. [24] Chen, P. C., Ting, G. C., & Li, C. H. (2020). A versatile small-scale structural laboratory for novel experimental earthquake engineering. Earthquakes and Structures, 18(3), 337–348. [25] Christiansen, R. E., & Sigmund, O. (2020). Designing meta-structures via inverse homogenization and gradient-based optimization. arXiv. [26] Shih, B.-Y., Chen, C.-Y., Chen, C.-W., & Hsin, I. (2012). Using Lego NXT to explore scientific literacy in disaster prevention and rescue systems. Natural Hazards, 64(1), 153–171. [27] Tsai, H. C., & Lin, G. C. (1993). Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Engineering & Structural Dynamics, 22(10), 957–973. [28] Lin, C.-C., Wang, J.-F., & Ueng, J.-M. (2001). Vibration control identification of seismically excited MDOF structure-PTMD systems. Journal of Sound and Vibration, 240(1), 87–115. [29] Hsieh, T.-H., Tsai, Y.-C., Kao, C.-J., Chang, Y.-M., & Lu, Y.-W. (2014). A conceptual atomic force microscope using LEGO for nanoscience education. Australasian Journal of Educational Technology, 4(2), 358. [30] Bakhtiar, S., Khan, F. U., Fu, H., Hajjaj, A. Z., & Theodossiades, S. (2024). Fluid flow based vibration energy harvesters: A critical review of state of the art technologies. Applied Sciences, 14(23), 11452. [31] Fernsler, J., Nguyen, V., Wallum, A., Benz, N., Hamlin, M., Pilgram, J., Vanderpoel, H., & Lau, R. (2017). A LEGO Mindstorms Brewster angle microscope. American Journal of Physics, 85(9), 655–662. [32] Liu, H., Wang, S., Zhang, Y., & Wang, W. (2014). Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), 1639–1651. [33] Bahadur, I. (2022). Dynamic modeling and investigation of a tunable vortex bladeless wind turbine. Energies, 15(18), 6773. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98740 | - |
| dc.description.abstract | 本研究旨在針對單自由度結構於不同加速度激振環境下的振動控制問題,提出一套具備控制力方向切換功能之主動式調諧質量阻尼器(Active Tuned Mass Damper, ATMD)控制架構。系統設計融合數值模擬與實驗驗證,透過 MATLAB 進行動態響應做最佳化設計,並結合樂高 EV3 平台進行控制實驗驗證。
本研究建構一套以雙質量系統為基礎的動態模型,包含主結構與調諧阻尼器,兩者透過橡皮筋與振動元件連接。控制策略設計上,導入可調整的控制力方向,並引入控制時間參數以及控制力係數。透過不同方向控制力輸入,使主結構振動位移響應最佳化,並將位移響應控制在設計之不同工作長度內。為提升控制效益,進一步應用 MATLAB 內建之 fmincon 最佳化演算法,調整控制參數並做最佳化設計。 最佳化振動模擬實例包含不同頻率加速度比較、不同振幅加速度比較、不同頻率組合之合成加速度輸入以及各大歷史地震加速度,探討在不同工作長度之最佳化模擬結果。在實驗方面,本研究使用樂高EV3為實驗器材,比較控制力為同方向與反方向兩種情境下對系統位移響應。結果顯示,反向控制力策略在合理控制下,能有效增加主結構振動位移響應,達成更好的振動控制效益。 綜上所述,本研究成功建立一套具調控控制力方向與參數最佳化功能之 ATMD 控制系統,並透過模擬與實驗雙重驗證其效能。未來研究可延伸應用於多自由度或非線性結構系統,並結合機器學習技術進行自動化控制策略設計,以進一步提升振動能量的控制與回收效率。 | zh_TW |
| dc.description.abstract | This study focuses on vibration control of a single-degree-of-freedom (SDOF) structure under different acceleration excitation environments. A control framework for an Active Tuned Mass Damper (ATMD) system is proposed, incorporating the ability to switch the direction of control forces. The system integrates parameter-based modeling and experimental validation, with optimization conducted through MATLAB simulations. The control strategy is implemented on the EV3 platform to carry out experimental verification.
The proposed system is built upon a two-degree-of-freedom dynamic model with mass-spring-damper components, including the primary structure and the control mass. A controllable force is applied via actuators, allowing adjustment of both magnitude and direction. The strategy introduces control timing parameters and force gain coefficients. By optimizing force input in both directions, the system can achieve effective displacement control. The control parameter tuning is performed using MATLAB’s fmincon optimization solver to obtain the best performance under various working lengths. The optimization cases consider comparisons across different excitation frequencies, amplitudes, speed ratios, and waveform combinations, including historical earthquake records. The results demonstrate that the reverse-direction control strategy, when properly tuned, can reduce the displacement of the primary structure more effectively than traditional methods, achieving superior vibration suppression benefits. Experimentally, the EV3 platform is used to validate system performance under various directional control inputs. Results show that bidirectional force control leads to better displacement reduction of the main structure. The system proves robust and efficient under different scenarios. In conclusion, this study successfully develops an ATMD system with adjustable bidirectional control forces and validates its performance through both simulations and experiments. The proposed framework may be extended to more complex nonlinear structural systems in the future, incorporating machine learning techniques to enable automated control strategy development and further enhance vibration energy harvesting efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:18:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:18:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的與架構 4 第二章 主動控制振動理論 6 2.1 ATMD 數學模型 6 2.1.1 系統運動方程式 6 2.1.2 一階狀態方程式與離散化 8 2.2 速度相位控制理論 9 2.2.1 相位主動控制理論簡介 10 2.2.2 相位控制力推導 10 2.2.3 控制力方向改變之影響 13 2.3 單一輸入控制力回饋方程式推導 15 2.3.1 系統建模與狀態空間表示 15 2.3.2 二次型性能指標與控制目標 15 2.3.3 增益最佳化推導與數學展開 16 2.3.4 數值解法與增益迭代流程 16 2.4 性能指標 L 負值化之影響 19 2.5 ADE模型設計 19 2.5.1 控制策略設計與參數設定 19 2.6 模擬結果 21 2.6.1 典型 Sin 函數:不同頻率條件下之分析 22 2.6.2 典型 Sin 函數:不同振幅條件下之分析 27 2.6.3 合成 Sin 弦波加速度環境之分析 32 2.6.4 拍頻加速度環境之分析 38 2.6.5 歷史地震加速度環境之分析 45 第三章 控制策略最佳化 55 3.1 最佳化設計簡介 55 3.2 最佳化設計演算法 55 3.3 最佳化分析工具與方法介紹 57 3.3.1 數學規劃法 59 3.3.1.1 線性不等式限制條件 61 3.3.1.2 線性等式和不等式限制條件 62 3.3.1.3 邊界限制條件 62 3.3.1.4 非線性限制條件 63 3.4 ADE 模組設計最佳化 64 3.4.1 評估指標介紹 65 3.4.2 典型 Sin 函數:不同頻率條件下最佳化之分析 65 3.4.3 典型 Sin 函數:不同振幅條件下最佳化之分析 75 3.4.4 不同激振條件下之性能分佈分析 84 第四章 分析與計算實例 86 4.1 合成 Sin 弦波加速度環境最佳化之分析 86 4.2 拍頻加速度環境最佳化之分析 110 4.3 歷史地震加速度環境最佳化之分析 131 第五章 樂高系統原型開發 146 5.1 樂高 EV3 簡介 146 5.2 樂高繪圖軟體:Ldraw介紹 147 5.3 樂高振動模擬系統之零件介紹 148 5.3.1 振動系統 149 5.3.2 控制系統 154 5.3.3 觀測系統 158 5.4 樂高振動模擬系統之組裝流程 161 5.5 樂高振動模擬系統之操作步驟與實驗流程 166 5.6 樂高實驗結果與分析 167 第六章 結論與未來展望 173 6.1 結論 173 6.2 未來展望 173 參考文獻 175 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 主動式調諧質量阻尼器 | zh_TW |
| dc.subject | 控制策略 | zh_TW |
| dc.subject | 振動模擬 | zh_TW |
| dc.subject | 最佳化設計 | zh_TW |
| dc.subject | 樂高 EV3 | zh_TW |
| dc.subject | LEGO EV3 | en |
| dc.subject | Active Tuned Mass Damper (ATMD) | en |
| dc.subject | Control strategy | en |
| dc.subject | Vibration modeling | en |
| dc.subject | Optimal design | en |
| dc.title | 主動調諧質量阻尼器於機械系統之振動解析與原型實驗研究 | zh_TW |
| dc.title | Vibration Analysis and Prototype Experimentation of Active Tuned Mass Dampers in Mechanical Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;吳筱梅;陳壁彰;董奕鍾 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Hsiao-Mei Wu;Bi-Chang Chen;Yi-Chung Tung | en |
| dc.subject.keyword | 主動式調諧質量阻尼器,控制策略,振動模擬,最佳化設計,樂高 EV3, | zh_TW |
| dc.subject.keyword | Active Tuned Mass Damper (ATMD),Control strategy,Vibration modeling,Optimal design,LEGO EV3, | en |
| dc.relation.page | 178 | - |
| dc.identifier.doi | 10.6342/NTU202503950 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 19.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
