Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德zh_TW
dc.contributor.advisorJin-Der Wenen
dc.contributor.author曹恩慈zh_TW
dc.contributor.authorEn-Cih Caoen
dc.date.accessioned2025-08-18T16:16:23Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationAitken, C. E., et al. (2008). An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical journal, 94(5), 1826-1835.

Balendra, R., et al. (2018). C9orf72-mediated ALS and FTD: multiple pathways to disease. Nature Reviews Neurology, 14(9), 544-558.

Butler, J. M. (2006). Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci, 51(2), 253-265.

Campbell, C. D., et al. (2013). Properties and rates of germline mutations in humans. Trends Genet, 29(10), 575-584.

DeJesus-Hernandez, M., et al. (2011). Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 72(2), 245-256.

Ellegren, H. (2000). Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet, 24(4), 400-402.

Farg, M. A., et al. (2014). C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet, 23(13), 3579-3595.

Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437(1-2), 55-75.

Geng, Y., et al. (2024). Crystal structure of a tetrameric RNA G-quadruplex formed by hexanucleotide repeat expansions of C9orf72 in ALS/FTD. Nucleic Acids Res, 52(13), 7961-7970.

Jain, A., et al. (2017). RNA phase transitions in repeat expansion disorders. Nature, 546(7657), 243-247.

Lander, E. S., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.

Lee, Y. B., et al. (2013). Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep, 5(5), 1178-1186.37

Miller, C. J., et al. (2022). Mismatch repair is a double-edged sword in the battle against microsatellite instability. Expert Rev Mol Med, 24, e32.

Porubsky, D., et al. (2025). Human de novo mutation rates from a four-generation pedigree reference. Nature, 643(8071), 427-436.

Raguseo, F., et al. (2023). The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes. Nat Commun, 14(1), 8272.

Rajan-Babu, I. S., et al. (2024). Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet.

Reddy, K., et al. (2013). The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem, 288(14), 9860-9866.

Renton, A. E., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257-268.

Roy, R., et al. (2008). A practical guide to single-molecule FRET. Nature Methods, 5(6), 507-516.

Sasmal, D. K., et al. (2016). Single-molecule fluorescence resonance energy transfer in molecular biology. Nanoscale, 8(48), 19928-19944.

Schmitz, A., et al. (2021). Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Front Cell Neurosci, 15, 637548.

Shi, Y., et al. (2019). Identification and therapeutic rescue of autophagosome and glutamate receptor defects in C9ORF72 and sporadic ALS neurons. JCI Insight, 5(15).

Su, Z., et al. (2014). Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron, 83(5), 1043-1050.

Wang, S., et al. (2024). RNA structure promotes liquid-to-solid phase transition of short RNAs in neuronal dysfunction. Commun Biol, 7(1), 137.

王渝暄. (2024). 以單分子螢光共振能量轉移技術檢測 r(G4C2) 重複序列之構形變化. 國立臺灣大學分子與細胞生物學研究所碩士論文.

張凱鈞. (2018). 以單分子技術與理論計算研究由信使核糖核酸結構引導之轉譯再編碼. 國立臺灣大學分子與細胞生物學研究所博士論文

許鈺婕. (2023). 以單分子螢光共振能量轉移觀測mRNA的長度對反義寡核苷酸以及30S核醣體次單元的交互作用影響. 國立臺灣大學分子與細胞生物學研究所碩士論文.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98732-
dc.description.abstract肌萎縮側索硬化症(Amyotrophic Lateral Sclerosis, ALS)與額顳葉失智症(Frontotemporal Dementia, FTD)為嚴重的神經退化性疾病,其主要的致病原因與C9orf72基因中六核苷酸(G4C2)序列的異常擴增密切相關。該序列轉錄生成的G4C2 RNA聚集現象,被認為是引發神經毒性的重要因素,然而其具體的致病機制仍有待釐清。因此,本研究利用螢光共振能量轉移(FRET)技術,探討G4C2 RNA重複序列的結構特性與其分子間的交互作用。
首先,為了探究不同鹽類與重複次數對G4C2 RNA結構穩定性的影響,我們設計了多種能與G4C2 RNA重複序列互補的反義寡核苷酸,藉由與r(G4C2)2的結合效率測定,顯示dC2G2C4為較合適的DNA探針。在此偵測系統中,就鹽類效應而言,r(G4C2)2的結構穩定度依序遞減:100 mM NaCl, 100 mM KCl, 100 mM NH4Cl ≫ 10 mM MgCl2。就重複次數(n = 2 ~ 5)而言,結果顯示在10 mM MgCl2和100 mM KCl的條件下,G4C2 RNA可能摺疊成不同結構,並且在100 mM KCl中,G4C2 RNA的結構穩定性呈現出重複次數依賴性。接著,利用凝膠電泳定量與螢光漂白實驗,結果顯示分別在10 mM MgCl2和100 mM KCl條件下製備的r(G4C2)2複合物,傾向形成RNA雙鏈(Duplex)或二聚體(dimer)結構,且在100 mM KCl的條件下更為穩定。最後,團簇模擬實驗顯示在10 mM MgCl2條件下,r(G4C2)25可以形成分子間相互作用。
本篇研究藉由評估反義寡核苷酸與G4C2 RNA的結合效率,顯示G4C2 RNA結構穩定性受重複次數與離子環境共同調控,且在較長重複序列中觀察到分子間相互作用,進而為在神經細胞內RNA團簇形成的起始機制提供線索。
zh_TW
dc.description.abstractAmyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are severe neurodegenerative diseases, with their primary pathogenic cause closely linked to abnormal expansions of the hexanucleotide (G4C2) repeat sequence in the C9orf72 gene. The aggregation of G4C2 RNA transcribed from this sequence is considered a key factor triggering neurotoxicity; however, the precise pathogenic mechanisms remain to be clarified. Therefore, this study employs Förster Resonance Energy Transfer (FRET) technology to investigate the structural characteristics of the G4C2 RNA repeat sequence and its intermolecular interactions.
Initially, to examine the influence of different salts and repeat numbers on the structural stability of G4C2 RNA, we designed various antisense oligonucleotides complementary to the G4C2 RNA repeat sequences. Binding efficiency assays conducted with r(G4C2)2 identified dC2G2C4 as the most suitable DNA probe. In the detection system, regarding the effect of salts, the structural stability of r(G4C2)2 follows the order: 100 mM NaCl, 100 mM KCl, 100 mM NH4Cl ≫ 10 mM MgCl2. In terms of repeat number (n = 2 – 5), the results indicate that under conditions of 10 mM MgCl2 and 100 mM KCl, G4C2 RNA may fold into distinct conformations, with a more pronounced positive correlation between repeat numbers and structural stability observed in 100 mM KCl. Subsequently, using gel electrophoresis quantification and fluorescence bleaching assays, the results show that r(G4C2)2 complexes formed under 10 mM MgCl2 and 100 mM KCl conditions predominantly assemble into RNA duplexes or dimeric structures, with greater stability under 100 mM KCl. Finally, cluster simulation experiments demonstrate that r(G4C2)25 can form intermolecular interactions under 10 mM MgCl2 conditions.
This study evaluates the binding efficiency between antisense oligonucleotides and G4C2 RNA, demonstrating that the structural stability of G4C2 RNA is jointly regulated by the number of repeats and the ionic environment. Intermolecular interactions were observed in longer repeat sequences, offering potential insights into the initiation mechanism of RNA cluster formation in neuronal cells.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:16:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:16:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 ix
第一章 緒論 1
1.1 短串聯重複序列 1
1.2 C9orf72相關疾病 2
1.3 C9orf72致病假說 3
1.4 G4C2 RNA:從結構多態性到相分離 4
1.5 單分子技術:螢光共振能量轉移 6
1.6 研究動機與目的 7
第二章 材料與方法 8
2.1 pT7SP6系列質體的建立 8
2.2 RNA的合成 12
2.3 RNA的螢光與生物素標定 14
2.4 r(G4C2)2複合物的製備 16
2.5 RNA團簇的製備 17
2.6 單分子螢光共振能量轉移實驗 17
2.6.1 實驗玻片之製備 17
2.6.2 樣本固定與數據擷取 19
2.6.3 反義寡核苷酸實驗 20
第三章 結果 22
3.1 RNA樣本製備 22
3.2 利用反義寡核苷酸探測G4C2 RNA的結構穩定性 23
3.2.1 測定不同長度的反義寡核苷酸與r(G4C2)2的結合效率 24
3.2.2 測定鹽類對於r(G4C2)2結構穩定性的影響 25
3.2.3 測定重複次數對於G4C2 RNA結構穩定性的影響 25
3.3 利用反義寡核苷酸探測r(G4C2)2複合物的結構穩定性 26
3.3.1 利用膠體電泳檢測r(G4C2)2複合物的組裝效率 26
3.3.2 利用螢光漂白實驗測定r(G4C2)2複合物的分子組成 28
3.3.3 測定鹽類對於r(G4C2)2複合物結構穩定性的影響 28
3.4 檢測G4C2 RNA的分子間交互作用 29
3.4.1 在不同鹽類環境中測定r(G4C2)25的結構特性 29
3.4.2 由多個分子的r(G4C2)25組裝成RNA團簇 30
3.4.3 在團簇模擬環境中探測r(G4C2)25分子間的交互作用30
第四章 討論 32
參考文獻 36
-
dc.language.isozh_TW-
dc.subjectC9orf72基因zh_TW
dc.subjectRNA 聚集體zh_TW
dc.subject液-液相分離zh_TW
dc.subject反義寡核酸zh_TW
dc.subject單分子技術zh_TW
dc.subjectC9orf72en
dc.subjectLLPSen
dc.subjectASOen
dc.subjectSingle molecule technologyen
dc.subjectRNA focien
dc.title以單分子螢光共振能量轉移技術探討G4C2 RNA重複序列的分子內與分子間的交互作用zh_TW
dc.titleStudy of intra- and intermolecular interactions of G4C2 RNA tandem repeats by Single‑Molecule FRETen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余建泓;張功耀zh_TW
dc.contributor.oralexamcommitteeChien-hung Yu;Kung-Yao Changen
dc.subject.keywordC9orf72基因,RNA 聚集體,液-液相分離,反義寡核酸,單分子技術,zh_TW
dc.subject.keywordC9orf72,RNA foci,LLPS,ASO,Single molecule technology,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202504298-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf10.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved