請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98730完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立民 | zh_TW |
| dc.contributor.advisor | Li-Min Wang | en |
| dc.contributor.author | 梁宏彰 | zh_TW |
| dc.contributor.author | Hong Zhang Liang | en |
| dc.date.accessioned | 2025-08-18T16:15:56Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | [1] H Kamerlingh Onnes. “The superconductivity of mercury”. In:Comm. Phys. Lab. Univ. Leiden 122 (1911),p. 124.
[2] Walther Meissner and Robert Ochsenfeld. “Ein neuer effekt bei eintritt der supraleitfähigkeit”. In: Naturwissenschaften 21.44 (1933), pp. 787–788. [3] LN Bardeen. “Cooper, and JR Schrieffer”. In: Phys. Rev 108.5 (1957), p. 1175. [4] Pia Jensen Ray. “Structural investigation of La 2-x Sr x CuO 4”. PhD thesis. Master's thesis (University of Copenhagen, 2015), 2015. [5] Catherine Witteveen et al. “Polytypism and superconductivity in the NbS 2 system”.In: Dalton Transactions 50.9 (2021), pp. 3216–3223. [6] Dongjing Lin et al. “Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides”. In:Nature communications 11.1 (2020), p. 2406. [7] I Guillamón et al. “Superconducting density of states and vortex cores of 2H-NbS2”. In: Physical review letters 101.16 (2008), p. 166407. [8] Wayne G Fisher and MJ Sienko. “Stoichiometry, structure, and physical properties of niobium disulfide”. In: Inorganic Chemistry 19.1 (1980), pp. 39–43. [9] Rusen Yan et al. “Thickness dependence of superconductivity in ultrathin NbS2”.In: Applied Physics Express 12.2 (2019), p. 023008. [10] Prakiran Baidya et al. “Transition from three-to two-dimensional Ising superconductivity in few-layer NbSe 2 by proximity effect from van der Waals heterostacking”. In: Physical Review B 104.17 (2021), p. 174510. [11] Wanying Li et al. “Recent progresses in two-dimensional Ising superconductivity”.In: Materials Today Physics 21 (2021), p. 100504. [12] Puhua Wan et al. “Orbital fulde–Ferrell–Larkin–ovchinnikov state in an ising superconductor”. In: Nature 619.7968 (2023), pp. 46–51. [13] Shusaku Imajo et al. “Emergent anisotropy in the fulde–ferrell–larkin–ovchinnikovstate”. In: Nature Communications 13.1 (2022), p. 5590. [14] Xinming Zhao et al. “Orbital Fulde-Ferrell-Larkin-Ovchinnikov state in 2H-NbS2 flakes”. In: arXiv preprint arXiv:2411.08980 (2024). [15] Ram Gopal Sharma. Superconductivity: Basics and applications to magnets.Vol. 214. Springer Nature, 2021. [16] Charles P Poole et al. Superconductivity. Elsevier, 2014. [17] Boyang Shen. Electromagnetic characteristics and ac loss analysis. Springer Na-ture, 2020, pp. 7–33. [18] VF Rusakov et al. “Oscillations of a single Abrikosov vortex in hard type-II superconductors”. In: Low Temperature Physics 43.6 (2017), pp. 670–682. [19] MR Beasley, R Labusch, and WW Webb. “Flux creep in type-II superconductors”.In: Physical Review 181.2 (1969), p. 682. [20] YB Kim, CF Hempstead, and AR Strnad. “Flux creep in hard superconductors”. In:Physical Review 131.6 (1963), p. 2486. [21] Daniel Saint-James and PG de Gennes. “Onset of superconductivity in decreasing fields”. In: Physics Letters 7.5 (1963), pp. 306–308. [22] OF De Lima et al. “Anisotropic superconducting properties of aligned MgB 2 crystallites”. In: Physical Review Letters 86.26 (2001), p. 5974. [23] F Hunte et al. “Two-band superconductivity in LaFeAsO0. 89F0. 11 at very high magnetic fields”. In: nature 453.7197 (2008), pp. 903–905. [24] A Gurevich. “Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors”. In: Physical Review B 67.18 (2003), p. 184515. [25] M Rakibul Hasan Sarkar and SH Naqib. “Magnetic field-and frequency dependent study of the AC susceptibility of high-T c YBCO single crystal”. In:Journal of Superconductivity and Novel Magnetism 35.5 (2022), pp. 1059–1070. [26] Kentaro Onabe, Michio Naito, and Shoji Tanaka. “Anisotropy of upper critical field in superconducting 2H–NbS2”. In: Journal of the Physical Society of Japan 45.1(1978), pp. 50–58. [27] Li Lin et al. “Surface-enhanced Raman scattering nanotags for bioimaging”. In:Journal of Applied Physics 129.19 (2021). [28] 賴相儒. “Crystal growth and characterization of Mo1-xCrxSe2 (0 ≤ x ≤ 0.2) and Cr2Se3 Single Crystals”. In: 碩士論文 (2018). [29] H Katzke, P Tolédano, and W Depmeier. “Phase transitions between polytypes and intralayer superstructures in transition metal dichalcogenides”. In:Physical Review B 69.13 (2004), p. 134111. [30] Janis M Dunn and William S Glaunsinger. “Synthesis and characterization of ammoniated niobium disulfide”. In: Solid State Ionics 27.4 (1988), pp. 285–294. [31] WG McMullan and JC Irwin. “Raman scattering from 2H and 3R–NbS2”. In:Solid State Communications 45.7 (1983), pp. 557–560. [32] Cornelis Jacobus Gorter and Hendrik Casimir. “On supraconductivity I”. In:Physica 1.1-6 (1934), pp. 306–320. [33] CK Jones, JK Hulm, and BS Chandrasekhar. “Upper critical field of solid solution alloys of the transition elements”. In: Reviews of Modern Physics 36.1 (1964),p. 74. [34] Mahmoud Abdel-Hafiez et al. “Superconducting properties of sulfur-doped iron selenide”. In: Physical Review B 91.16 (2015), p. 165109. [35] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004. [36] Xiangyu Bi et al. “Orbital-selective two-dimensional superconductivity in 2 H-NbS2”. In: Physical Review Research 4.1 (2022), p. 013188. [37] K-H Müller et al. “The upper critical field in superconducting MgB2”. In:Journal of alloys and compounds 322.1-2 (2001), pp. L10–L13. [38] AW Tsen et al. “Nature of the quantum metal in a two-dimensional crystalline superconductor”. In: Nature Physics 12.3 (2016), pp. 208–212. [39] Zhen Liu et al. “Effects of domain structures on vortex state of two-dimensionalsuperconducting Mo2C crystals”. In: 2D Materials 6.2 (2019), p. 021005. [40] IO Kulik. “Critical Field of Surface Superconductivity and the Structure of a Superconducting Layer in an Inclined Field”. In:Soviet Journal of Experimental and Theoretical Physics 28 (1969), p. 461. [41] An-Lei Zhang et al. “Experimental evidence for type-1.5 superconductivity inZrB12 single crystal”. In: Science China Physics, Mechanics & Astronomy 65.9(2022), p. 297412 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98730 | - |
| dc.description.abstract | 本研究系統性探討了厚度對層狀二維材料 NbS2 超導特性的影響。實驗採用固態合成法製備 NbS2 單晶,進行交流磁化率量測,並通過機械剝離法獲得不同厚度 S40(厚度約 40 μm) 以及 S5(厚度約 5 μm) 樣品,隨後對其進行電性量測。
研究發現,厚度對 NbS2 的超導性質產生些微影響:較厚樣品 S40 的超導轉變溫度為 Tc = 6.074 K,而較薄樣品 S5 的 Tc = 6.151 K,顯示較薄樣品呈現略高的超導轉變溫度。上臨界磁場 Hc2 在 ab 面內方向兩個樣品保持相差甚微(約 14 T),均超過其 Pauli 限制場 HPauli ≈ 11 T,可能存在 Fulde–Ferrell–Larkin–Ovchinnikov 超導態;但在 c 軸方向則由 2.37 T 增至3.10 T,較厚樣品表現出更強的各向異性特徵。相干長度 ξc 與 ξab 隨厚度變化甚微,且 ξc 始終遠小於 ξab。 磁通釘扎能分析揭示了明顯的維度效應:較薄樣品 S5 在兩個磁場方向均呈現U (H) ∝ ln H 的二維釘扎特徵,而 S40 的兩個方向在低磁場皆下具有較高釘扎能,突顯了厚度對維度轉變的調控作用。Berezinskii–Kosterlitz–Thouless(BKT)相變量測進一步證實了較薄樣品 S5 具更明顯的二維超導行為,與磁通釘扎結果一致。 表面超導態的對比研究顯示,S40 與 S5 的 Hc3/Hc2 比值分別為 1.17 及 1.28,均低於 Ginzburg–Landau 理論預測的 1.69。相比之下,塊體樣品 S0 的比值約為1.34,更接近理論預期,說明樣品厚度的減少削弱了表面超導態的穩定性。 | zh_TW |
| dc.description.abstract | This study systematically investigates the effect of thickness on the superconducting properties of the layered two-dimensional material NbS2. Single crystals of NbS2 were synthesized via a solid‐state reaction, and their AC magnetic susceptibility was measured. Mechanically exfoliated samples of two different thicknesses—S5 (approximately 40 μm) and S5 (approximately 5 μm)—were obtained, followed by electrical transport measurements.
We found that thickness has a slight impact on the superconductivity of NbS2: the thicker sample S40 exhibits a superconducting transition temperature of Tc = 6.074 K, whereas the thinner sample S5 shows Tc = 6.151 K, indicating a marginally higher transition temperature in the thinner specimen. The upper critical field Hc2 within the ab plane remains nearly identical for both samples (around 14 T), exceeding their Pauli limit field HPauli ≈ 11 T, which suggests the possible realization of an Fulde–Ferrell–Larkin–Ovchinnikov superconducting state. Along the c axis, however, Hc2 increases from 2.37 T to 3.10 T, demonstrating stronger anisotropy in the thicker sample. The coherence lengths ξc and ξab vary only slightly with thickness, with ξc consistently much smaller than ξab. Analysis of the vortex pinning potential reveals a pronounced dimensional effect: the thinner sample S5 displays two‐dimensional pinning behavior U (H) ∝ ln H in both field orientations, while S40 exhibits higher pinning energies at low fields in both directions,underscoring the role of thickness in tuning the dimensional crossover. Measurements of the Berezinskii–Kosterlitz–Thouless (BKT) transition further confirm that the thinner sample S5 manifests more pronounced two‐dimensional superconducting behavior, consistent with the vortex pinning results. A comparative study of surface superconductivity shows that the ratios Hc3/Hc2 for S40 and S5 are 1.17 and 1.28, respectively—both below the Ginzburg–Landau theoretical prediction of 1.69. In contrast, the bulk sample S0 has a ratio of approximately 1.34, closer to the theoretical value, indicating that reducing sample thickness weakens the stability of the surface superconducting state. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:15:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:15:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 x 第一章 序論 1 1.1 超導序論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 NbS2 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 NbS2 的結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 NbS2 的特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Ising and FFLO 超導 . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 第二章 理論背景與原理簡介 8 2.1 超導體特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 零電阻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 邁斯納效應 (Meissner Effect,Perfect Diamagnetism) . . . . . . . 8 2.1.3 臨界磁場 (critical magnetic field) . . . . . . . . . . . . . . . . . . 9 2.1.4 臨界電流 (critical current) . . . . . . . . . . . . . . . . . . . . . 10 2.2 超導體理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 倫敦穿隧深度 (London peneration depth) . . . . . . . . . . . . . 10 2.2.2 二流體模型 (two-fluid model) . . . . . . . . . . . . . . . . . . . 12 2.2.3 (Ginzburg-Landau,簡稱 G-L 模型) . . . . . . . . . . . . . . . . 13 2.2.4 相干長度 (coherence length) . . . . . . . . . . . . . . . . . . . . 14 2.2.5 I 類和 II 類超導體 . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.6 磁通渦流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.7 Anderson-Kim 磁通蠕動模型 . . . . . . . . . . . . . . . . . . . . 17 2.2.8 Hc3(表面態的超導零界磁場) . . . . . . . . . . . . . . . . . . 18 2.2.9 BKT 相變 (Berezinskii-Kosterlitz-Thouless 相變) . . . . . . . . . 18 2.2.10 Multiband model Hc2 (T ) 之行為描述 . . . . . . . . . . . . . . . 19 2.2.11 AC 交流磁化率 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 第三章 實驗方法 24 3.1 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.1 NbS2 樣品合成 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 量測系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 X 光繞射分析儀 (X-ray Diffractometor,XRD) . . . . . . . . . . . 25 3.2.2 拉曼繞射系統 (Raman) . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 SQUID 量測系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 28 第四章 實驗結果與討論 30 4.1 初步判斷 NbS2 性質 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.1 X 光繞射分析儀 (X-ray Diffractometor,XRD) . . . . . . . . . . . 30 4.1.2 拉曼繞射系統 (Raman) . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.3 SQUID 量測系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 電阻率、上臨界磁場與釘扎能分析 . . . . . . . . . . . . . . . . . . 35 4.2.1 縱向電阻率 (ρxx) 與溫度變化 . . . . . . . . . . . . . . . . . . . 35 4.2.2 外加磁場下的縱向電阻率與溫度變化 . . . . . . . . . . . . . . 38 4.2.3 上臨界磁場、相干長度與溫度關係變化圖 . . . . . . . . . . . . 41 4.2.4 釘扎能分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 BKT 相變、Hc3 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.1 BKT 相變 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Hc3 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 磁性量測分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 AC 交流磁化率分析 . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.2 藉由交流磁化率之 Hc3 分析 . . . . . . . . . . . . . . . . . . . . 64 第五章 結論 68 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 第二類超導 | zh_TW |
| dc.subject | Fulde–Ferrell–Larkin–Ovchinnikov 超導 | zh_TW |
| dc.subject | 釘扎效應 | zh_TW |
| dc.subject | BKT 相變 | zh_TW |
| dc.subject | Hc3 | zh_TW |
| dc.subject | NbS2 | zh_TW |
| dc.subject | Type-II superconductivity | en |
| dc.subject | NbS2 | en |
| dc.subject | Hc3 | en |
| dc.subject | Berezinskii–Kosterlitz–Thouless transition | en |
| dc.subject | Vortex pinning effect | en |
| dc.subject | Fulde–Ferrell–Larkin– Ovchinnikov superconductivity | en |
| dc.subject | Two-dimensional materials | en |
| dc.title | 二硫化鈮單晶的超導特性之研究 | zh_TW |
| dc.title | Superconducting Properties of NbS2 Single Crystals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳昭翰;尤孝雯 | zh_TW |
| dc.contributor.oralexamcommittee | Jau-Han Chen;Hsiao-Wen Yu | en |
| dc.subject.keyword | 二維材料,第二類超導,Fulde–Ferrell–Larkin–Ovchinnikov 超導,釘扎效應,BKT 相變,Hc3,NbS2, | zh_TW |
| dc.subject.keyword | Two-dimensional materials,Type-II superconductivity,Fulde–Ferrell–Larkin– Ovchinnikov superconductivity,Vortex pinning effect,Berezinskii–Kosterlitz–Thouless transition,Hc3,NbS2, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202503396 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
