Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓玉山zh_TW
dc.contributor.advisorYu-San Hanen
dc.contributor.author黃莉zh_TW
dc.contributor.authorLi Huangen
dc.date.accessioned2025-08-18T16:15:17Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation韓玉山, 曾萬年, 黃永森, 廖一久 (2000).日本鰻的銀化:季節、年齡、體型與脂肪。水產研究, p.37-45.
楊順德, 張錦宜, 周瑞良, 劉富光 (2011). 開發日本鰻苗人工膏狀飼料取代絲蚯蚓馴餌, 台灣水產學會學術論專題報導發表會論文摘要集, DO- 07, p.36 .
池田隆明, 岩崎久彥, 辻英明 (2013). EM菌群在水產養殖中的應用效果及前景探討. 水産養殖研究, p.105-111.
雷霽霖, 黃濱, 劉濱, 徐志方, 顏闊秋, 翟介明 (2014). 構建基於水產福利養殖理念的高端養殖戰略研究.中國工程科學, p.14-20.
韓玉山 (2019). 鰻魚資源與放流之研究。台灣水產試驗所特刊。第27號:111-121.
Abele, Doris & Puntarulo, Susana (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative biochemistry and physiology, p.405-415.
Ahmed, S., Foysal, M. J., Rahman, M. M., et al. (2021). Dietary probiotics enhance growth performance, immune response, and disease resistance in fish: A review. Aquaculture Reports, 19, 100611.
Abdel-Aziz, M., Bessat, M., Fadel, A., Elblehi, S., et al.(2020). Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities. Aquacult. 28, 947-963.
Arshad, J., Rukhsana, B., et al.(2011). Effect of effective microorganisms application on crop growth, yield, and nutrition in Vigna radiata (L.). Wilczek in different soil amendment systems. Communications in Soil Science and Plant Analysis. 42, 17-28.
Akihiro Okamura , Yohei Sakamoto , Yoshiaki Yamada and Katsumi Tsukamoto.(2018)Accumulation of hyaluronan in reared Japanese eel Anguilla japonica during early ontogeny.Aquaculture, 497, 220-225.
Alcaide, Elena, Sonia Herraiz, and Consuelo Esteve. (2006). Occurrence of Edwardsiella tarda in wild European eels Anguilla anguilla from Mediterranean Spain. Diseases of aquatic organisms, 73, 77-81.
Arulkumaran, N., Routledge, M., Schlebusch, S., Lipman, J., & Conway Morris, A. (2020). Antimicrobial-associated harm in critical care: a narrative review. Intensive care medicine, 46(2), 225-235.
Azimirad, M., Alebouyeh, M., & Naji, T. (2017). Inhibition of lipopolysaccharide- induced interleukin 8 in human adenocarcinoma cell line HT-29 by spore probiotics: B. coagulans and B. subtilis (natto). Probiotics and antimicrobial proteins, 9(1), 56-63.
Banerjee, G., & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77.
Barbosa, T., Serra, C., La Ragione, R., Woodward, M. & Henriques, A. (2005). Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968–978.
Baik, J. E., Jang, Y. O., Kang, S. S., Cho, K., Yun, C. H., & Han, S. H. (2015). Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Molecular immunology, 65(1), 77-85.
Chaiyawan, N., Taveeteptaikul, P., Wannissorn, B., Ruengsomwong, S., Klungsupya, P., Buaban, W. & Itsaranuwat, P. (2010). Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai Journal of Veterinary Medicine, 40, 207–214.
Chen, H., Zhao, Y., Chen, K., Wei, Y., Luo, H., Li, Y., ... & Luo, D. (2022). Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Frontiers in Immunology, 13, 872896.
Cuesta, A., Meseguer, J., & Esteban, M. (2004). Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Veterinary Immunology and Immunopathology, 101(3-4), 203-210
Davidson, J., Good, C., Welsh, C., Brazil, B., & Summerfelt, S. (2009). Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high system flushing rates. Aquacultural Engineering, 41,136−145.
Dawood, M. A., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454, 243–251.
Engevik, M. A., Danhof, H. A., Ruan, W., Engevik, A. C., Chang-Graham, A. L., Engevik, K. A., Shi, Z., Zhao, Y., Brand, C. K., & Krystofiak, E. S. (2021). Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. MBio, 12(2), e02706-02720.
Gao, Y. J., Yang, H. J., Liu, Y. J., Chen, S. J., Guo, D. Q., Yu, Y. Y., & Tian, L. X. (2014). Effects of graded levels of threonine on growth performance, biochemical parameters and intestine morphology of juvenile grass carp Ctenopharyngodon idella. Aquaculture, 424, 113-119.
Ghiasi, F., Mirzargar, S. S., et al. (2018). Effects of probiotic Pediococcus acidilactici on growth and gut microbiota in fish. Aquaculture, 495, 881–888.
Guo, X., Li, D., Lu, W., Piao, X. & Chen, X. (2006). Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van Leeuwenhoek, 90, 139–146.
Hong, H. A., Huang, J. M., Khaneja, R., Hiep, L. V., Urdaci, M. C., & Cutting, S. M. (2008). The safety of Bacillus subtilis and Bacillus indicus as food probiotics. Journal of applied microbiology, 105(2), 510-520.
Higa, T., & Parr, J. F. (1994). Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment. International Nature Farming Research Center.
Huerta-Rabago, J. A., Montoya-Mejia, R., Magana-Gallegos, J. A., et al. (2020). Application of effective microorganisms in aquaculture: Current status and future prospects. Reviews in Aquaculture, 12(4), 2425-2440.
Huerta-Rábago, J. A., et al. (2019). Effects of probiotics in aquaculture: A review. Reviews in Aquaculture, 11(3), 800–816.
Huerta-Rábago, J. A., Martínez-Cruz, P., et al. (2019). Probiotics in aquaculture: A promising emerging alternative. Aquaculture Research, 50(8), 2243–2258.
Jahangiri, L., & Esteban, M. Á. (2018). Administration of probiotics in aquaculture: A review of beneficial effects. Fish & Shellfish Immunology, 76, 94–103.
Ji, Z., Zhu, C., Zhu, X., Ban, S., Yu, L., Tian, J., & Jiang, M. (2023). Dietary host- associated Bacillus subtilis supplementation improves intestinal microbiota, health and disease resistance in Chinese perch (Siniperca chuatsi). Animal Nutrition, 13, 197-205.
Kenzo Kaifu , Kazuki Yokouchi, Michael J. Miller d.Management of glass eel fisheries is not a sufficient measure to recover a local Japanese eel population.Marine Policy. 134, 104806.
Ka Yin Leung, Bupe A. Siame, Byron J. Tenkink, Rebecca J. Noort, Yu-Keung Mok. Edwardsiella tarda – Virulence mechanisms of an emerging gastroenteritis pathogen.Microbes and Infection. 14(1), 26-34.
Kers, J. G., & Saccenti, E. (2022). The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Frontiers in Microbiology, 12, 4366.
Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14.
Knap, I., Kehlet, A.B., Bennedsen, M., Mathis, G.F., Hofacre, C.L., Lumpkins, B.S., Jensen, M.M., Raun, M. & Lay, A. (2011). Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poultry Science, 90, 1690-1694.
Le He, LiQun Wu, YiJun Tang, Peng Lin, ShaoWei Zhai, YiQun Xiao, SongLin Guo.Immunization of a novel outer membrane protein from Aeromonas hydrophila simultaneously resisting A. hydrophila and Edwardsiella anguillarum infection in European eels (Angullia angullia). Fish & Shellfish Immunology. 97, Pages 300-312.
Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports, 127(1), 4-22.
La Ragione, R.M. & Woodward, M.J. (2003). Competitive exclusion by Bacillus subtilis spores of Salmonella enterica, serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology, 94, 245–256.
Lee, J. S., Cheng, H., Damte, D., Lee, S. J., Kim, J. C., Rhee, M. H., & Park, S. C. (2013). Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish & shellfish immunology, 34(3), 756-761.
Lee, K., Lillehoj, H.S., Jang, S.I., Li, G., Lee, S.-H., Lillehoj, E.P. & Siragusa, G.R. (2010b). Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens. Comparative Immunology, Microbiology and Infectious Diseases, 33, e105–e110.
Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41.
Merrifield, D. L., et al. (2010). The influence of probiotics on the gut microbiota and gut health of fish. Aquaculture Research, 41(3), 384–392.
Merrifield, D. L., Dimitroglou, A., Foey, A., et al. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2), 1-18.
Nayak, S. K. (2010). Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology, 29(1), 2-14.
Peng Lin, Ming Xu, Qiuhua Yang, Minxia Chen, Songlin Guo.Inoculation of Freund's adjuvant in European eel (Anguilla anguilla) revealed key KEGG pathways and DEGs of host anti-Edwardsiella anguillarum infection.Fish & Shellfish Immunology. 136, 108708.
Pérez-Sánchez, T., Mora-Sánchez, B., & Balcázar, J. L. (2014). Biological approaches for disease control in aquaculture: Advantages, limitations and challenges. Trends in Microbiology, 22(11), 583-591.
Ringo, E., Olsen, R. E., Gifstad, T. O., et al. (2010). Prebiotics in aquaculture: A review. Aquaculture Nutrition, 16(2), 117-136.
Ringo, E., Zhou, Z., Vecino, J. L. G., et al. (2016). Effect of dietary components on the gut microbiota of aquatic animals: A never-ending story? Aquaculture Nutrition, 22(2), 219-282.
Renata Dondajewska, Anna Kozak, Joanna Rosińska, Ryszard Gołdyn. Water quality and phytoplankton structure changes under the influence of effective microorganisms (EM) and barley straw – Lake restoration case study.Science of The Total Environment. 660, 1355-1366.
Rui Hatakeyama a, Ryusuke Sudo a, Masato Higuchi b, Masataka Satomi a, Takashi Yatabe a, Ryutaro Takasaki a, Hitoshi Imaizumi a, Yukinori Kazeto .Individual variation in post-metamorphic changes in feeding incidence, digestive organ tissues and enzyme gene expression in Japanese eel Anguilla japonica glass eels.Aquaculture, 576, 739890.
Verschuere, L., Rombaut, G., Sorgeloos, P., et al. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655-671.
Wang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2022). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 14(1), 262-278.
Wentao Xu, Patrick Y. Mawolo, Jiancao Gao, Lanlu Chu, Yuyu Wang, Zhijuan Nie, Lili Song, Nailin Shao, Jun Gao, Pao Xu, Gangchun Xu.Effects of supplemental effective microorganisms in feed on the growth, immunity, and appetite regulation in juvenile GIFT tilapia.Aquaculture Reports, 19 (2021) 100577.
Wang, Y. B., Li, J. R., & Lin, J. (2008). Probiotics in aquaculture: Challenges and outlook. Aquaculture, 281(1–4), 1–4.
Ye, G., Dong, X., et al. (2022). Effects of probiotics on nitrogenous waste reduction and gut microbiota in aquaculture systems. Frontiers in Microbiology, 13, 845308.
Zhou, X., Tian, Z., Wang, Y., et al. (2018). Effect of dietary probiotics on growth performance, immunity and intestinal microflora of Japanese eel (Anguilla japonica). Aquaculture Research, 49(3), 1200-1209.
Zhang, C. N., Li, X. F., et al. (2011). Effects of dietary probiotic supplementation on growth performance and intestinal microflora of tilapia. Aquaculture Nutrition, 17(2), e557–e563.
Zhe Yu, Liang Li, Rui Zhu, Min Li, Jing Duan, Jing-Yao Wang, Yan-Hui Liu, Li-Fang WuMonitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems.Aquaculture Reports,16, 100283.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98727-
dc.description.abstract日本鰻 (Anguilla japonica) 是臺灣、日本、中國和韓國的重要經濟養殖魚類。台灣的鰻魚養殖業曾是全球的重要供應者。由於鰻苗資源的減少、環境變遷以及疾病等因素,近年來鰻魚養殖面臨着諸多挑戰。台灣的養殖業者引進集約化循環水系統來提高養殖效率和產品品質。隨著鰻魚養殖日益集約化,細菌性疾病逐漸成為鰻魚養殖主要威脅,愛德華氏菌(Edwardsiella tarda)感染是魚類養殖中常見的細菌性疾病之一。養殖者通常添加抗生素來抑制疾病的發生,但長期使用抗生素會出現抗藥性問題,因此,養殖者期望添加功能性生物飼料添加劑或益生菌來實現環境友善,增強魚類的免疫力和提高生長性能。「 EM 」(Effective Microorganisms) 是一種由乳酸菌、酵母菌、光合成細菌等多種有益微生物組成的菌種,在水產養殖業中應用時有助於水質管理、動物健康、污染減少等,提升養殖效益並降低生態影響。本實驗探討在飼料中添加不同比例的EM菌對於日本鰻玻璃鰻生長發育、腸道形態、免疫和抗病性的影響。實驗採用200尾日本鰻,分為 5 組,每組進行 2 重複。這5組分別被餵養添加了不同濃度EM菌的飼料,分別為0%(對照組)、0.5%、1%、2%和5%。各組添加的EM菌經過精密天平稱量,加入各組基礎的膏狀飼料中混合攪拌混勻。每 14 天測量鰻苗的長度與體重,每日記録死亡數量和餵食情況,分析其生長性能。本實驗實驗周期為12週,實驗結束後每缸犧牲 4 尾,採集腸道、頭腎。採集的腸道進行石蠟包埋,切片觀察腸道形態及腸道絨毛狀態。採集的頭腎進行 qPCR 分析免疫相關基因表現。愛德華氏菌用於攻毒試驗。本研究顯示,在鰻魚飼料中添加2%有效微生物為最適劑量,能顯著提升腸道中益生菌如 Bacteroides、Faecalibacterium 與 Alistipes 的相對豐度,並抑制如 Prevotella 等潛在致病菌,促進腸道菌相的多樣性與穩定性,進而增進腸道健康與整體生理機能。相較之下,雖然5%添加組亦能改變菌相組成,但易造成菌群結構過度偏向特定菌屬如 Megasphaera,降低整體多樣性,需審慎評估其長期影響;而0.5%以下劑量則效果有限,與對照組差異不明顯。在生長表現方面,2% EM添加組在12週試驗期間呈現最佳的體重與體長增長,顯著優於其他組別,顯示其有助於提升鰻苗的飼料利用率與營養吸收效率。此現象可能與腸道健康改善、腸道絨毛結構優化及微生物群落平衡有關,從而促進養殖成長效率。免疫基因表現分析亦指出,2% EM組可顯著促進頭腎中與免疫、發炎及抗氧化相關基因的表達,包含提升非特異性免疫酵素活性(如 lysozyme)、調節發炎因子(如 TNF-α)、並減輕氧化壓力。綜合七項指標基因的表現結果,2%添加組展現出穩定且全面的免疫調節效果。此外,攻毒實驗結果亦顯示,2% EM組具有最高的生存率與最強的抗病力,證實適量的複合益生菌可有效強化鰻苗之抗病能力與存活表現。整體而言,2% EM添加量為本試驗中各項生理指標表現最佳之劑量,不僅具調節腸道菌相、促進免疫功能與提升抗病力之潛力,亦能有效促進生長表現。建議實際應用中採用2% EM菌添加量,並進一步追蹤其於不同生長階段與養殖條件下之長期效果,以優化鰻魚健康養殖策略與經濟效益。zh_TW
dc.description.abstractJapanese eel (Anguilla japonica)is an economically important aquaculture species in Taiwan, Japan, China, and South Korea. Taiwan was once a major global supplier of farmed eels. However, in recent years, eel aquaculture has faced numerous challenges due to the depletion of eel fry resources, environmental changes, and disease outbreaks. To improve production efficiency and product quality, Taiwanese aquaculture farmers have adopted intensive recirculating aquaculture systems (RAS). With the increasing intensification of eel farming, bacterial diseases have become a major threat, among which Edwardsiella tarda infections are one of the most common bacterial diseases in aquaculture. Although antibiotics are commonly used to control disease outbreaks, long-term use can lead to antibiotic resistance. Therefore, farmers are seeking environmentally friendly alternatives, such as functional feed additives and probiotics, to enhance fish immunity and growth performance. Effective Microorganisms (EM), a mixed microbial culture composed of lactic acid bacteria, yeasts, photosynthetic bacteria, and other beneficial microbes, have been widely used in aquaculture for water quality management, improving animal health, reducing pollution, and enhancing overall farming efficiency with minimal ecological impact. This study investigated the effects of different dietary EM supplementation levels on the growth, intestinal morphology, immune responses, and disease resistance of Japanese glass eels (Anguilla japonica). A total of 200 eels were divided into five groups with two replicates per group. The groups were fed diets containing 0% (control), 0.5% , 1% , 2% , and 5% EM. All EM concentrations were accurately weighed and evenly mixed into the basal paste feed for each group. Body length and weight were measured every 14 days, and daily records of mortality and feeding behavior were maintained to evaluate growth performance. The feeding trial lasted for 12 weeks. At the end of the experiment, four eels from each tank were sacrificed to collect intestinal and head kidney samples. Intestinal samples were processed using paraffin embedding and histological sectioning to observe intestinal morphology and villus structure. Head kidney samples were analyzed by qPCR to assess the expression of immune-related genes. E.tarda was used for pathogen challenge tests. The results indicated that EM supplementation generally improved the growth performance compared to the control group. The group fed with 2% EM showed the longest intestinal villi, suggesting the best digestive and absorptive efficiency. Furthermore, EM supplementation enhanced immune activity, reduced intracellular stress and inflammatory responses, suppressed potential pathogenic bacteria, and increased survival rates following E. tarda challenge. Based on these findings, a 2% EM supplementation level is recommended for practical application, with long-term monitoring to further optimize eel farming efficiency and health management strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:15:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:15:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract V
目 次 VII
圖 次 IX
表 次 X
第一章 前言 1
1.1 日本鰻的介紹 1
1.2鰻魚養殖系統 2
1.3鰻魚飼料 2
1.4鰻魚抗病性 3
1.5 EM菌介紹 3
1.6研究動機與研究目的 4
第二章 材料與方法 5
2.1 實驗設計與養殖管理 5
2.2 樣本採集與處理 5
2.3 生長參數計算 6
2.4 腸道形態分析 6
2.5 RNA提取與cDNA合成 6
2.6引物設計 7
2.7 攻毒實驗 7
2.8 腸道菌相分析 8
2.9 統計分析 8
第三章 結果 10
3.1 日本鰻生長性能參數 10
3.2 日本鰻腸道形態 10
3.3 日本鰻免疫基因表達 10
3.4 日本鰻攻毒實驗結果 11
3.5 日本鰻腸道菌相分析 11
第四章 討論 13
4.1 飼料添加EM菌對日本鰻生長性能之影響 13
4.2 飼料添加EM菌對日本鰻腸道形態之影響 13
4.3 飼料添加EM菌對日本鰻免疫基因表達之影響 14
4.4 飼料添加EM菌對日本鰻攻毒實驗結果之影響 14
4.5 飼料添加EM菌對日本鰻腸道菌相之影響 15
第五章 結論 17
參考文獻 18
-
dc.language.isozh_TW-
dc.subject日本鰻zh_TW
dc.subject生長性能zh_TW
dc.subject免疫基因表現zh_TW
dc.subject愛德華氏菌zh_TW
dc.subject有效微生物zh_TW
dc.subjectimmune related genesen
dc.subjectAnguilla japonicaen
dc.subjectEffective Microorganismsen
dc.subjectEdwardsiella tardaen
dc.subjectGrowth performanceen
dc.title飼料中添加有效的微生物對日本鰻Anguilla japonica玻璃鰻生長發育、腸道形態、免疫和抗病性的影響zh_TW
dc.titleEffects of supplemental effective microorganisms in feed on the growth, intestinal morphology, immunity, and disease resistance of Anguilla japonica glass eelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李昆達;黃美瑩;陳立涵zh_TW
dc.contributor.oralexamcommitteeKung-Ta Lee;Ming-Ying Huang;Li-Han Chenen
dc.subject.keyword日本鰻,生長性能,免疫基因表現,愛德華氏菌,有效微生物,zh_TW
dc.subject.keywordAnguilla japonica,Growth performance,immune related genes,Edwardsiella tarda,Effective Microorganisms,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202502563-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved