Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98723
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓zh_TW
dc.contributor.advisorJui-Hung Yenen
dc.contributor.author黃崇銘zh_TW
dc.contributor.authorChong-Ming Huangen
dc.date.accessioned2025-08-18T16:14:23Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation吳正宗 (2008)。第二章 土壤酸鹼度(電位測定法)。收錄於中華土壤肥料學會(編),土壤與肥料分析手冊(一):土壤化學性質分析。中華土壤肥料學會。
吳繼光、林素禎 (1998)。囊叢枝內生菌根菌應用技術手冊。農業試驗所。
李豐在 (2005)。土壤傳播性病害之非農藥防治法。《花蓮區農業專訊》,4,1-4。
林素禎、洪崑煌、吳繼光 (2000)。囊叢枝內生菌根菌在臺灣代表性土壤中之分布. 中華農業研究。
林素禎、張秀月、蔡耀賢、劉書妤 (2024)。應用微生物改善作物栽培土壤地力研究. 臺中區農業改良場特刊, 109–124。
邱燕欣、蘇士閔、林立、鍾文全、楊任琦 (2015)。植物病蟲害的物理防治法。《植物種苗》,17(3),1-19。
陳俊位、鄒雅靜、蔡宜馨 (2014)。木黴菌在作物病害防治的開發與應用。載於《農業生物資材產業發展研討會專刊》。行政院農業委員會臺中區農業改良場編印(頁 87-116)。臺中:行政院農業委員會臺中區農業改良場。
Aarrouf, J., & Urban, L. (2020). Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS One, 15(7), e0235918.
Abd-Elbaky, A., El-Abeid, S., & Osman, N. (2018). Effect of integration between vascular arbuscular mycorrhizal fungi and Potassium silicate supplementation on controlling onion white rot. Egyptian Journal of Phytopathology, 46(1), 125–142.
Abro, M. A., Sun, X., Li, X., Jatoi, G. H., & Guo, L.-D. (2019). Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. The plant pathology journal, 35(6), 598.
Agrios, G. N. (2005). Plant pathology. Elsevier.
Aguk, J., Karanja, N., Schulte-Geldermann, E., Bruns, C., Kinyua, Z., & Parker, M. (2018). Control of bacterial wilt (Ralstonia solanacearum) in potato (Solanum tuberosum) using rhizobacteria and arbuscular mycorrhiza fungi. African Journal of Food, Agriculture, Nutrition and Development, 18(2), 13371–13387.
Ahanger, M. A., Tyagi, S. R., Wani, M. R., & Ahmad, P. (2013). Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment: Volume 1 (pp. 25–55). Springer.
Ahmad, M., Ossiewatsch, H., & Basedow, T. (2003). Effects of neem‐treated aphids as food/hosts on their predators and parasitoids. Journal of Applied Entomology, 127(8), 458–464.
Alizadeh, Z., Heidari, P., & Asghari, H. R. (2025). Exploring the influence of symbiosis between arbuscular mycorrhizal fungi and beans on potassium uptake and the activity of AKT and HKT genes. Scientific Reports, 15(1), 1–12.
Andrade, J. L. S. d., Garcia, K. G. V., de Araujo Pereira, A. P., & Mendes Filho, P. F. (2025). Synergistic Effects of Silicon and Arbuscular Mycorrhizae on the Tolerance and Growth of Mimosa caesalpiniaefolia Benth. in Cd-Contaminated Soil. Tropical Plant Biology, 18(1), 1–14.
Andrino, A., Guggenberger, G., Kernchen, S., Mikutta, R., Sauheitl, L., & Boy, J. (2021). Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Frontiers in plant science, 12, 661842.
Archana, J., Amanullah, M. M., Manoharan, S., & Subramanian, K. (2012). Influence of iron and arbuscular mycorrhiza inoculation on growth and yield of hybrid maize in calcareous soil. Madras Agricultural Journal, 99(1), 65–67.
Babendreier, D. (2007). Pros and cons of biological control. Biological invasions, 403–418.
Bago, B., Pfeffer, P. E., & Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124(3), 949–958.
Bagyaraj, D., Sharma, M., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science, 1288–1293.
Bao, X., Zou, J., Zhang, B., Wu, L., Yang, T., & Huang, Q. (2022). Arbuscular mycorrhizal fungi and microbes interaction in rice mycorrhizosphere. Agronomy, 12(6), 1277.
Begum, N., Rahman, M., Bashar, M., Hossain, M., & Uddin, M. (2011). Effect of potassium fertilizer on development of bacterial blight of rice. Bangladesh Journal of Scientific and Industrial Research, 46(1), 69–76.
Bhantana, P., Rana, M. S., Sun, X.-c., Moussa, M. G., Saleem, M. H., Syaifudin, M., Shah, A., Poudel, A., Pun, A. B., & Bhat, M. A. (2021). Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis, 84, 19–37.
Blanchard, C., Wells, D. E., Pickens, J. M., & Blersch, D. M. (2020). Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae, 6(1), 10.
Boddington, C., & Dodd, J. (2000). The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant and Soil, 218, 137–144.
Bolton, A. (1980). Effects of temperature and pH of soilless media on root rot of poinsettia caused by Pythium aphanidermatum. Canadian Journal of Plant Pathology, 2(2), 83–85.
Bonfante, P., & Genre, A. (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends in plant science, 13(9), 492–498.
Bowen, P., Menzies, J., Ehret, D., Samuels, L., & Glass, A. D. (1992). Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science, 117(6), 906–912.
Brown, T., & Mahler, R. (1987). Effects of phosphorus and acidity on levels of silica extracted from a Palouse silt loam. Soil Science Society of America Journal, 51(3), 674–677.
Buck, G. B., Korndörfer, G. H., Nolla, A., & Coelho, L. (2008). Potassium silicate as foliar spray and rice blast control. Journal of Plant Nutrition, 31(2), 231–237.
Cargill, R. I., Shimizu, T. S., Kiers, E. T., & Kokkoris, V. (2025). Cellular anatomy of arbuscular mycorrhizal fungi. Current Biology, 35(11), R545–R562.
Carvalho, M. P., Rodrigues, F. A., Silveira, P. R., Andrade, C. C. L., Baroni, J. C. P., Paye, H. S., & Loureiro Junior, J. E. (2010). Rice resistance to brown spot mediated by nitrogen and potassium. Journal of phytopathology, 158(3), 160–166.
Cavagnaro, T. R. (2008). The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant and Soil, 304, 315–325.
Datnoff, L. E., & Rodrigues, F. (2005). The role of silicon in suppressing rice diseases. American Phytopathological Society.
Donaldson, S., & Deacon, J. (1992). Role of calcium in adhesion and germination of zoospore cysts of Pythium: a model to explain infection of host plants. Microbiology, 138(10), 2051–2059.
El-Sheery, I. (2017). Effectiveness of Potassium silicate in suppression white rot disease and enhancement physiological resistance of onion plants, and its role on the soil microbial community. Middle East J, 6(2), 376–394.
Etesami, H., Shokri, E., & Jeong, B. R. (2022). The combined use of silicon/nanosilicon and arbuscular mycorrhiza for effective management of stressed agriculture: Action mechanisms and future prospects. In Silicon and nano-silicon in environmental stress management and crop quality improvement (pp. 241–264). Elsevier.
Fajola, A., & Alasoadura, S. (1975). Antagonistic effects of Trichoderma harzianum on Pythium aphanidermatum causing the damping-off disease of tobacco in Nigeria. Mycopathologia, 57(1), 47–52.
Genre, A., Chabaud, M., Timmers, T., Bonfante, P., & Barker, D. G. (2005). Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. The Plant Cell, 17(12), 3489–3499.
Ghodekar, K. S., Yendrembam, K. D., Sonawane, V. K., Longkumer, I. Y., & Ibrahim, M. M. (2025). Biology and development of the melon fruit fly, Zeugodacus cucurbitae (Coq.), on various cucurbit hosts. New Zealand Journal of Crop and Horticultural Science, 1–16.
González-García, Y., Flores-Robles, V., Cadenas-Pliego, G., Benavides-Mendoza, A., De La Fuente, M. C., Sandoval-Rangel, A., & Juárez-Maldonado, A. (2022). Application of two forms of silicon and their impact on the postharvest and the content of bioactive compounds in cucumber (Cucumis sativus L.) fruits. Biocell, 46(11).
Güneş, H., Demir, S., & Akköprü, A. (2022). Relationship between some plants species belonging to Brassicaceae, Chenopodiaceae and Urticaceae families, and Arbuscular Mycorrhizal Fungi and Rhizobacteria. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(6), 1350–1360.
Hajiboland, R., Moradtalab, N., Aliasgharzad, N., Eshaghi, Z., & Feizy, J. (2018). Silicon influences growth and mycorrhizal responsiveness in strawberry plants. Physiology and Molecular Biology of Plants, 24, 1103–1115.
Hammer, E. C., Nasr, H., Pallon, J., Olsson, P. A., & Wallander, H. (2011). Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 21, 117–129.
Hansen, H. B., Raben-Lange, B., Raulund-Rasmussen, K., & Borggaard, O. (1994). Monosilicate adsorption by ferrihydrite and goethite at pH 3–6. Soil Science, 158(1), 40–46.
Harvey, P., & Lawrence, L. (2008). Managing Pythium root disease complexes to improve productivity of crop rotations. Outlooks on Pest Management, 19(3), 127.
Hasanuzzaman, M., Bhuyan, M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31.
Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177(6), 831–844.
Heine, G., Tikum, G., & Horst, W. J. (2007). The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. Journal of Experimental Botany, 58(3), 569–577.
Ho-Plágaro, T., & García-Garrido, J. M. (2022). Molecular regulation of arbuscular mycorrhizal symbiosis. International Journal of Molecular Sciences, 23(11), 5960.
Huffaker, C. B. (2012). Theory and practice of biological control. Elsevier.
Iler, R. K. (1955). The colloid chemistry of silica and silicates (Vol. 80). LWW.
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., & Tang, D. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356(6343), 1172–1175.
Jin, H., Liu, J., Liu, J., & Huang, X. (2012). Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Science China Life Sciences, 55, 474–482.
Karpagavalli, S., & Kumar, N. K. (2020). Compatibility of Fungicides on Sporulation and Growth of Trichoderma viride with Treated Seeds. Int. J. Curr. Microbiol. App. Sci, 9(9), 712–716.
Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92(10), 1095–1103.
Kipngeno, P., Losenge, T., Maina, N., Kahangi, E., & Juma, P. (2015). Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biological Control, 90, 92–95.
Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H., & Jansa, J. (2017). Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant and Soil, 419(1), 319–333.
Koohakan, P., Ikeda, H., Jaenaksorn, T., Tojo, M., & Kusakari, S.-i. (2002). Effects of Inorganic Elements on the In-vitro Growth of Pythium aphanidermatum (Edson) Fitzp. Microbes and environments, 17(2), 91–97.
Lakshmipathy, K., Sindhu, S., Singh, A., Chikkaballapur Krishnappa, S., & Duggonahally Veeresh, C. (2024). A review on pesticides degradation by using ultraviolet light treatment in agricultural commodities. EFood, 5(1), e129.
Lalitha, M., & Dhakshinamoorthy, M. (2014). Forms of soil potassium-a review. Agricultural reviews, 35(1).
Larsen, J., Graham, J. H., Cubero, J., & Ravnskov, S. (2012). Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum. European Journal of Plant Pathology, 133, 361–369.
Li, Y.-B., Zhang, Z.-P., Yuan, Y., Huang, H.-C., Mei, X.-Y., Du, F., Yang, M., Liu, Y.-X., & Zhu, S.-S. (2022). Appropriate soil heat treatment promotes growth and disease suppression of Panax notoginseng by interfering with the bacterial community. Journal of microbiology and biotechnology, 32(3), 294.
Liu, J., Fang, L., Pei, W., Li, F., & Zhao, J. (2023). Effects of magnesium application on the arbuscular mycorrhizal symbiosis in tomato. Symbiosis, 89(1), 73–82.
Liu, J., Liu, J., Liu, J., Cui, M., Huang, Y., Tian, Y., Chen, A., & Xu, G. (2019). The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiology, 180(1), 465–479.
Liu, J., Maldonado‐Mendoza, I., Lopez‐Meyer, M., Cheung, F., Town, C. D., & Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal, 50(3), 529–544.
Løvschall, K. B., Velasquez, S. T., Kowalska, B., Ptaszek, M., Jarecka, A., Szczech, M., & Wurm, F. R. (2024). Enhancing stability and efficacy of Trichoderma bio‐control agents through layer‐by‐layer encapsulation for sustainable plant protection. Advanced Sustainable Systems, 8(7), 2300409.
Mandal, S. M., Chakraborty, D., & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant signaling & behavior, 5(4), 359–368.
Menzies, J., Bowen, P., Ehret, D., & Glass, A. D. (1992). Foliar applications of Potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science, 117(6), 902–905.
Mosse, B. (1973). Advances in the study of vesicular-arbuscular mycorrhiza. Annual Review of phytopathology, 11, 171–196.
Mugnier, J., & Mosse, B. (1987). Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Transactions of the British Mycological Society, 88(3), 411–413.
Mukhtar, T., Kayani, M. Z., & Hussain, M. A. (2013). Response of selected cucumber cultivars to Meloidogyne incognita. Crop Protection, 44, 13–17.
NK, D. S., & MH, H. (2023). ASSESSMENT OF AMF ASSOCIATION AND ITS EFFECTS ON AMARANTHACEAE PLANTS.
Nomikou, M., Janssen, A., Schraag, R., & Sabelis, M. W. (2002). Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental & applied acarology, 27(1), 57–68.
Onofre, R. B., Gadoury, D. M., Stensvand, A., Bierman, A., Rea, M., & Peres, N. A. (2021). Use of ultraviolet light to suppress powdery mildew in strawberry fruit production fields. Plant Disease, 105(9), 2402–2409.
Pagano, M. C., Kyriakides, M., & Kuyper, T. W. (2023). Effects of pesticides on the arbuscular mycorrhizal symbiosis. Agrochemicals, 2(2), 337–354.
Pasricha, N. (2002). Potassium dynamics in soils in relation to crop nutrition.
Perez‐Garcia, A., Romero, D., Fernández‐ortuño, D., Lopez‐Ruiz, F., De Vicente, A., & Tores, J. A. (2009). The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Molecular plant pathology, 10(2), 153–160.
Pivato, B., Offre, P., Marchelli, S., Barbonaglia, B., Mougel, C., Lemanceau, P., & Berta, G. (2009). Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza, 19, 81–90.
Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current opinion in plant biology, 10(4), 393–398.
Pozza, E. A., Pozza, A. A. A., & Botelho, D. M. d. S. (2015). Silicon in plant disease control. Revista Ceres, 62(3), 323–331.
Prajapati, K., & Modi, H. (2012). The importance of potassium in plant growth–a review. Indian journal of plant sciences, 1(02-03), 177–186.
Qiu, L.-X., Guan, D.-X., Liu, Y.-W., Teng, H. H., Li, Z.-B., Lux, A., Kuzyakov, Y., & Ma, L. Q. (2024). Mechanisms of arbuscular mycorrhizal fungi increasing silicon uptake by rice. Journal of Agricultural and Food Chemistry, 72(30), 16603–16613.
Ramamoorthy, B., & Velayutham, M. (1976). N, P and K in soil–chemistry, form & availability in soil fertility. Theory & practice compiled. ICA R, New Delhi.
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23(7), 515–531.
Richard Drees, L., Wilding, L. P., Smeck, N. E., & Senkayi, A. L. (1989). Silica in soils: quartz and disordered silica polymorphs. Minerals in soil environments, 1, 913–974.
Rodrigues, F., Duarte, H., Domiciano, G., Souza, C., Korndörfer, G., & Zambolim, L. (2009). Foliar application of Potassium silicate reduces the intensity of soybean rust. Australasian Plant Pathology, 38(4), 366–372.
Rodrigues, F. A., & Datnoff, L. E. (2015). Silicon and plant diseases (Vol. 148). Springer.
Rodrigues, F. Á., McNally, D. J., Datnoff, L. E., Jones, J. B., Labbé, C., Benhamou, N., Menzies, J. G., & Bélanger, R. R. (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 94(2), 177–183.
Savory, E. A., Granke, L. L., QUESADA‐OCAMPO, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular plant pathology, 12(3), 217–226.
Schwartz, H. F., & Gent, D. H. (2004). Damping-Off and Seedling Blight. In: Spinach.
Sharma, M., Delta, A. K., & Kaushik, P. (2022). Response of Yam (Dioscorea alata) to the application of rhizophagus irregularis and Potassium silicate under salinity stress. Stresses, 2(2), 234–241.
Shaul, O., Galili, S., Volpin, H., Ginzberg, I., Elad, Y., Chet, I., & Kapulnik, Y. (1999). Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interactions, 12(11), 1000–1007.
Shehata, S. A. (2018). Effect of foliar spray with Potassium silicate on growth, yield, quality and storability of cucumber fruits. Annals of Agricultural Science, Moshtohor, 56(2), 385–396.
Shi, X., Long, Y., He, F., Zhang, C., Wang, R., Zhang, T., Wu, W., Hao, Z., Wang, Y., & Wang, G.-L. (2018). The fungal Pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathogens, 14(1), e1006878.
Shukla, A., Kumar, A., Jha, A., Salunkhe, O., & Vyas, D. (2013). Soil moisture levels affect mycorrhization during early stages of development of agroforestry plants. Biology and fertility of soils, 49(5), 545–554.
Sinclair, J. B., & Dhingra, O. D. (2017). Basic plant pathology methods. CRC press.
Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.
Solanki, M. (2021). The Zn as a vital micronutrient in plants. Journal of microbiology, biotechnology and food sciences, 11(3), e4026–e4026.
Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., & Vierheilig, H. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and Pathogenic plant-fungus interactions. Molecules, 12(7), 1290–1306.
Stevens, K., Spender, S., & Peterson, R. (2002). Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza, 12, 277–283.
Sudhasha, S. (2020). Chapter-1 Constructiveness of the biocontrol agents on fusarial wilt of tomato incited by the destructive Pathogen Fusarium oxysporum f. sp. lycopersici. Current research and innovations in plant pathology, 1(1), 4–8.
Svenningsen, N. B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A., Cruz-Paredes, C., Nybroe, O., & Jakobsen, I. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. The ISME journal, 12(5), 1296–1307.
Tandon, H., & Sekhan, G. (1998). K research and agricultural production in India. publications from fertilizer development and consultation organization in New Delhi.
Tokumaru, S., Ando, Y., Kurita, H., Hayashida, Y., Ishiyama, M., & Abe, Y. (2007). Seasonal prevalence and species composition of Liriomyza sativae Blanchard, L. trifolii (Burgess), and L. bryoniae (Kaltenbach)(Diptera: Agromyzidae) in Kyoto Prefecture. Applied entomology and zoology, 42(2), 317–327.
Toporek, S. M., & Keinath, A. P. (2021). A diagnostic guide for Pythium damping-off and root and stem rot of cucurbits. Plant Health Progress, 22(3), 415–418.
Torra, J., Montull, J. M., Taberner, A., Onkokesung, N., Boonham, N., & Edwards, R. (2021). Target-site and non-target-site resistance mechanisms confer multiple and cross-resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Frontiers in plant science, 12, 625138.
Trautwig, A. N., Jackson, M. R., Kivlin, S. N., & Stinson, K. A. (2023). Reviewing ecological implications of mycorrhizal fungal interactions in the Brassicaceae. Frontiers in plant science, 14, 1269815.
Tubaña, B. S., & Heckman, J. R. (2015). Silicon in soils and plants. In Silicon and plant diseases (pp. 7–51). Springer.
Wan, N.-F., Fu, L., Dainese, M., Kiær, L. P., Hu, Y.-Q., Xin, F., Goulson, D., Woodcock, B. A., Vanbergen, A. J., & Spurgeon, D. J. (2025). Pesticides have negative effects on non-target organisms. Nature Communications, 16(1), 1360.
Wang, C., White, P. J., & Li, C. (2017). Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza, 27, 369–381.
Welter, S. C., Rosenheim, J. A., Johnson, M. W., Mau, R., & Gusukuma-Minuto, L. R. (1990). Effects of Thrips palmi and western flower thrips (Thysanoptera: Thripidae) on the yield, growth, and carbon allocation pattern in cucumbers. Journal of economic entomology, 83(5), 2092–2101.
Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of chemical ecology, 36(1), 80–100.
Xie, K., Cakmak, I., Wang, S., Zhang, F., & Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249–256.
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in microbiology, 14, 1160551.
Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., Zeng, F., & Chu, Z. (2018). Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. International Journal of Molecular Sciences, 19(1), 241.
Zhu, X.-C., Song, F.-B., & Xu, H.-W. (2010). Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 331(1), 129–137.



 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98723-
dc.description.abstract花胡瓜 (Cucumis sativus L.) 為世界重要經濟作物,在栽培初期發生的花胡瓜立枯病 (Pythium aphanidermatum) 會讓植株萎凋、死亡,是苗期重要病害。目前可應用於田間之資材選項有限。根據前人研究,在水耕管理花胡瓜的營養液中,加入矽酸鉀可以有效減緩立枯病發病率及病徵,且對於植株產量及植株乾重都有顯著的提升效果,因此欲找出適合施用在田間之矽酸鉀施用濃度及確立其防治效果。在花胡瓜栽培過程中,常接種叢枝菌根菌 (Arbuscular Mycorrhizal Fungi, AMF) 作為促進其生長之生物肥料。在有害生物綜合管理 (Integrated Pest Management, IPM) 策略下,必須確認不同防治方式之間是否有交互作用及確立其整合運用方式。本試驗測試矽酸鉀不同稀釋倍數之溶液澆灌花胡瓜,結果發現在施用三次稀釋倍數500倍之矽酸鉀於接種叢枝菌根菌 (Claroideoglomus etunicatum) 之花胡瓜時,對於其土壤pH值和EC值沒有造成影響,且沒有降低叢枝菌根菌 (C. etunicatum) 之拓殖率,並且可顯著提升株高、SPAD值 (葉綠素相對含量指標) 、果實重量及果實總可溶性固形物 (Total Soluble Solids, TSS)。當稀釋倍數500倍之矽酸鉀搭配叢枝菌根菌 (C. etunicatum) 防治花胡瓜立枯病 (P. aphanidermatum) 時具有最好的防治效果,使罹病度下降50%,且病害進展最為緩慢,比單獨施用矽酸鉀或是單獨接種叢枝菌根菌 (C. etunicatum) 有更好的防治效果,可做為未來防治策略中的一環。zh_TW
dc.description.abstractCucumber (Cucumis sativus L.) is an important economic crop worldwide. During the early stages of cultivation, cucumber damping-off disease caused by Pythium aphanidermatum can lead to plant wilting and death, posing a serious threat during the seedling stage. Currently, there are limited material options to control this disease. According to previous studies, the addition of potassium silicate to the nutrient solution in hydroponic cucumber cultivation can effectively reduce the incidence and severity of damping-off disease, while significantly enhancing plant yield and dry weight. Therefore, this study aimed to determine a suitable field-application concentration of potassium silicate and to verify its disease control efficacy.During cucumber cultivation, arbuscular mycorrhizal fungi (AMF) are commonly inoculated as biofertilizers to promote plant growth. Under an Integrated Pest Management (IPM) strategy, it is essential to evaluate potential interactions between different control measures and establish their integrated use. This study tested different dilutions of potassium silicate applied to cucumber plants. The results showed that applying 500-fold diluted potassium silicate three times to cucumber plants inoculated with Claroideoglomus etunicatum did not affect soil pH or EC values, nor did it reduce AMF colonization rates. Furthermore, it significantly increased plant height, SPAD value (an indicator of relative chlorophyll content), fruit weight, and total soluble solids (TSS).When 500-fold diluted potassium silicate was combined with C. etunicatum to manage cucumber damping-off disease (P. aphanidermatum), it achieved the best control effect, reducing disease severity by 50% and slowing disease progression. This combined treatment was more effective than using potassium silicate or AMF alone and can be considered a promising component of future disease management strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:14:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:14:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
目 次 V
圖 次 VIII
表 次 X
壹、前言 1
一、花胡瓜 1
(一)花胡瓜簡介 1
(二)花胡瓜立枯病 2
(三)花胡瓜立枯病防治方式 2
二、叢枝菌根菌 3
(一)叢枝菌根菌的共生 3
(二)叢枝菌根菌促進植物養分吸收 4
(三)叢枝菌根菌對病害的防治 5
(四)影響叢枝菌根菌共生的因子 6
三、矽酸鉀 8
(一)矽在土壤中的含量、型態與化學特性 8
(二)鉀在土壤中的含量、型態與化學特性 9
(三)矽提升植物的抗病力 9
(四)鉀提升植物的抗病力 10
(五)矽酸鉀防治病害 10
四、有害生物綜合管理 (Integrated Pest Management, IPM) 10
(一)生物防治 11
(二)物理防治 11
(三)化學防治 12
(四)整合多元防治策略之應用 13
(五)不同防治方式間的相容性 13
貳、研究目的 15
參、試驗架構 16
肆、材料與方法 17
一、菌種來源 17
二、病原真菌培養基成分與製作 17
(一)1.5%水瓊脂 (Water Agar) 17
(二)馬鈴薯葡萄糖瓊脂培養基 (Potato Dextrose Agar, PDA) 17
(三)5% V8蔬菜瓊脂 (5%V-8 Vegetable Juice Agar) 17
三、供試植物材料種植 17
四、供試菌株保存 18
五、供試矽酸鉀資材 18
六、矽酸鉀對立枯病菌生長影響 18
(一)矽酸鉀對立枯病菌游走孢子影響 18
(二)矽酸鉀對立枯病菌菌絲生長影響 19
(三)矽酸鉀不同稀釋倍數對應之pH值對立枯病菌菌絲生長影響 19
七、生長試驗 19
(一)植株生物量指標 20
(二)土壤電導度 (Electrical Conductivity, EC) 20
(三)土壤pH值 (Potential of Hydrogen, pH) 20
(四)花胡瓜根部染色及菌根菌拓殖率測定 20
(五)葉片相對葉綠素含量測定 21
(六)相對水分含量測定 21
(七)果實重量 21
(八)果實中總可溶性固形物 21
(九)果實硬度 21
八、病害試驗 22
(一)試驗設計 22
(二)罹病率 (Disease Incidence) 與防治效果 22
(三)罹病度 (Disease Severity) 22
(四)病害進程曲線下面積 (Area Under the Disease Progress Curve, AUDPC) 23
(五)葉片元素分析 23
(六)葉片相對葉綠素含量測定 23
九、統計分析 23
伍、結果與討論 25
一、矽酸鉀對立枯病菌菌絲生長影響 25
二、矽酸鉀稀釋溶液對游走孢子 (Zoospore) 發芽的抑制率 30
三、矽酸鉀施用對介質及叢枝菌根菌影響 32
四、測試花胡瓜在矽酸鉀與叢枝菌根菌接種下植株生長狀況 35
五、果實產量與品質 41
六、矽酸鉀與叢枝菌根菌共同施用下對花胡瓜立枯病防治效果 45
陸、結論 54
柒、參考文獻 55
-
dc.language.isozh_TW-
dc.subject叢枝菌根菌 (Arbuscular mycorrhizal fungi)zh_TW
dc.subject花胡瓜 (Cucumber)zh_TW
dc.subject有害生物綜合管理 (Integrated Pest Management)zh_TW
dc.subject花胡瓜立枯病 (Pythium aphanidermatum)zh_TW
dc.subject矽酸鉀 (Potassium silicate)zh_TW
dc.subjectCucumberen
dc.subjectArbuscular mycorrhizal fungien
dc.subjectPotassium silicateen
dc.subjectPythium aphanidermatumen
dc.subjectIntegrated Pest Managementen
dc.title矽酸鉀與叢枝菌根菌接種對花胡瓜生長與立枯病的防治效果zh_TW
dc.titleEvaluation of Potassium Silicate and Arbuscular Mycorrhizal Fungi (Claroideoglomus etunicatum) Inoculation on Cucumber Growth and Management of Damping-off Disease (Pythium aphanidermatum)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭旭峰;洪傳揚;陳玟瑾;林素禎zh_TW
dc.contributor.oralexamcommitteeShiuh-Feng Shiao;Chwan-Yang Hong;Wen-Ching Chen;Suh-Jen Linen
dc.subject.keyword叢枝菌根菌 (Arbuscular mycorrhizal fungi),花胡瓜 (Cucumber),有害生物綜合管理 (Integrated Pest Management),花胡瓜立枯病 (Pythium aphanidermatum),矽酸鉀 (Potassium silicate),zh_TW
dc.subject.keywordArbuscular mycorrhizal fungi,Cucumber,Integrated Pest Management,Pythium aphanidermatum,Potassium silicate,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202501659-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-04
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved