Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖世偉zh_TW
dc.contributor.advisorShih-Wei Liaoen
dc.contributor.author游祖鈞zh_TW
dc.contributor.authorTzu-Chun Yuen
dc.date.accessioned2025-08-18T16:13:15Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-09-
dc.identifier.citationReferences
[1] A. Gabizon and D. Khovratovich, "Plookup: A simplified polynomial protocol for lookup tables," Cryptology ePrint Archive, 2020.
[2] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin, "Caulk: Lookup arguments in sublinear time," in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 3121–3134, 2022.
[3] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin, "Baloo: Nearly optimal lookup arguments," Cryptology ePrint Archive, 2022.
[4] L. Eagen, D. Fiore, and A. Gabizon, "cq: Cached quotients for fast lookups," Cryptology ePrint Archive, 2022.
[5] S. Papini and U. Haböck, "Logup-gkr: A more efficient approach for proving lookups," Cryptology ePrint Archive, 2023.
[6] S. Setty, J. Thaler, and R. Wahby, "Lasso: lookup arguments for rlc-based snarks," Cryptology ePrint Archive, 2023.
[7] U. B. RDI, "Zk learning group lecture 12: Zkvm and zkevm." https://rdi.berkeley.edu/zk-learning/assets/lecture12.pdf. Accessed: 2024.
[8] HackerNoon, "Exploring lookup arguments." https://hackernoon.com/exploring-lookup-arguments. Accessed: 2024.
[9] S. Goldwasser, S. Micali, and C. Rackoff, "The knowledge complexity of interactive proof systems," in SIAM Journal on computing, vol. 18, pp. 186–208, SIAM, 1989.
[10] V. Buterin, "An incomplete guide to rollups." https://vitalik.ca/general/2021/01/05/rollup.html, 2021.
[11] P. Team, "zkevm: Scaling ethereum with zero knowledge proofs," Technical Report, 2022.
[12] R. Z. Team, "Risc zero: A zero-knowledge virtual machine," Technical Report, 2022.
[13] S. Bowe, J. Grigg, and D. Hopwood, "Halo 2," Cryptology ePrint Archive, 2019.
[14] S. Goldwasser, S. Micali, and C. Rackoff, "The knowledge complexity of interactive proof systems," in Proceedings of the seventeenth annual ACM symposium on Theory of computing, pp. 291–304, 1985.
[15] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, "From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again," in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 326–349, 2012.
[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, "Quadratic span programs and succinct nizks without pcps," in Annual international conference on the theory and applications of cryptographic techniques, pp. 626–645, Springer, 2013.
[17] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway, "Everything provable is provable in zero-knowledge," in Conference on the Theory and Application of Cryptography, pp. 37–56, Springer, 1988.
[18] A. Kate, G. M. Zaverucha, and I. Goldberg, "Constant-size commitments to polynomials and their applications," in International conference on the theory and application of cryptology and information security, pp. 177–194, Springer, 2010.
[19] B. Parno, M. Raykova, and V. Vaikuntanathan, "Succinct arguments from multi-prover interactive proofs and their efficiency benefits," in Annual Cryptology Conference, pp. 255–272, Springer, 2013.
[20] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, "Libra: Succinct zero-knowledge proofs with optimal prover computation," in Annual International Cryptology Conference, pp. 733–764, Springer, 2019.
[21] D. Catalano and D. Fiore, "Vector commitments and their applications," in Public-Key Cryptography--PKC 2013, pp. 55–72, Springer, 2013.
[22] R. W. Lai and G. Malavolta, "Subvector commitments with application to succinct arguments," Cryptology ePrint Archive, 2019.
[23] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, "Bulletproofs: Short proofs for confidential transactions and more," in 2018 IEEE symposium on security and privacy (SP), pp. 315–334, IEEE, 2018.
[24] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, "Bulletproofs: Short proofs for confidential transactions and more," in 2018 IEEE symposium on security and privacy (SP), pp. 315–334, IEEE, 2018.
[25] J. T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities," Journal of the ACM, vol. 27, no. 4, pp. 701–717, 1980.
[26] R. Zippel, "Probabilistic algorithms for sparse polynomials," in International symposium on symbolic and algebraic manipulation, pp. 216–226, 1979.
[27] A. Fiat and A. Shamir, "How to prove yourself: practical solutions to identification and signature problems," in Conference on the Theory and Application of Cryptographic Techniques, pp. 186–194, Springer, 1986.
[28] E. Ben-Sasson, A. Chiesa, and N. Spooner, "Interactive oracle proofs," in Theory of Cryptography Conference, pp. 31–60, Springer, 2016.
[29] N. Ron-Zewi and R. D. Rothblum, "Fast reed-solomon interactive oracle proofs of proximity," in International Colloquium on Automata, Languages, and Programming, pp. 1–14, 2016.
[30] J. Teutsch and C. Reitwiessner, "Truebit: A scalable verification solution for blockchains," arXiv preprint arXiv:1908.04756, 2017.
[31] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, "Arbitrum: Scalable, private smart contracts," in 27th USENIX Security Symposium, pp. 1353–1370, 2018.
[32] P. Team, "Polygon zkevm: A zk-rollup with ethereum virtual machine opcodes." https://polygon.technology/polygon-zkevm, 2022.
[33] M. Labs, "Matter labs zksync 2.0: A zk-rollup using zero-knowledge proofs." https://docs.zksync.io/, 2022.
[34] S. Team, "Scroll: Native zkevm layer 2 for ethereum." https://scroll.io/, 2023.
[35] R. Zero, "Risc zero: A zero-knowledge virtual machine." https://risczero.com/, 2023.
[36] S. Labs, "Sp1: A performant, open-source zero-knowledge virtual machine." https://github.com/succinctlabs/sp1, 2024.
[37] J. Thaler et al., "Jolt: Snarks for virtual machines via lookups." https://jolt.a16zcrypto.com/, 2024.
[38] Iden3, "Circom: A circuit compiler for zero knowledge proofs." https://docs.circom.io/.
[39] J. Eberhardt et al., "Zokrates: A toolbox for zksnarks on ethereum." https://zokrates.github.io/.
[40] Aleo, "Leo: A functional, statically-typed programming language built for writing private applications." https://leo-lang.org/.
[41] M. Labs, "Zinc: A framework for zk-snark development." https://zinc.matterlabs.dev/.
[42] StarkWare, "Cairo: A turing-complete stark-friendly cpu architecture." https://www.cairo-lang.org/.
[43] A. Protocol, "Noir: A domain specific language for snark proving systems." https://noir-lang.org/.
[44] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, "Plonk: Permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge," in Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 517–552, Springer, 2019.
[45] NIST, "Secure hash standard (shs)," Tech. Rep. FIPS PUB 180-4, National Institute of Standards and Technology, 2015.
[46] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, "Delegating computation: interactive proofs for muggles," in Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 113–122, 2008.
[47] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J. L. Muñoz-Tapia, "Plonkup: Reconciling plonk with plookup," Cryptology ePrint Archive, 2022.
[48] U. Haböck, "Multivariate lookups based on logarithmic derivatives," Cryptology ePrint Archive, 2022.
[49] J. Ernstberger, S. Chaliasos, G. Kadianakis, S. Steinhorst, P. Jovanovic, A. Gervais, B. Livshits, and M. Orrù, "zk-bench: A toolset for comparative evaluation and performance benchmarking of snarks," 2023. Technical University of Munich, Imperial College London, Ethereum Foundation, University College London, Centre National de la Recherche Scientifique.
[50] N. Gailly et al., "zk-benchmarking: Benchmarking zk-circuits in circom." https://github.com/delendum-xyz/zk-benchmarking, 2023. Delendum Research.
[51] M. El-Hajj et al., "Evaluating the efficiency of zk-snark, zk-stark, and bulletproof in real-world scenarios: A benchmark study," Information, 2024. Systematic Review, 3 citations.
[52] C. Steidtmann et al., "Benchmarking zk-circuits in circom," IACR Cryptology ePrint Archive, 2023. 2 citations.
[53] H. Guo et al., "Benchmarking zk-friendly hash functions and snark proving systems for evm-compatible blockchains," arXiv preprint, 2024. 1 citation.
[54] han0110, "plonkish: A zksnark building block framework." https://github.com/han0110/plonkish/commit/303cf244803ea56d1ac8c24829ec4c67e4e798ab, 2023. Accessed: 2024-07-28.
[55] han0110, "plonkish_backend in plonkish framework." https://github.com/han0110/plonkish/tree/main/plonkish_backend, 2023. Accessed: 2024-07-28.
[56] Z. Foundation, "halo2: A zk-snark library." https://github.com/zcash/halo2. Accessed: 2024-07-28.
[57] caulk crypto, "caulk: An implementation of the caulk lookup argument." https://github.com/caulk-crypto/caulk/commit/8210b51fb8a9eef4335505d1695c44ddc7bf8170. Accessed: 2024-07-28.
[58] geometryxyz, "cq: An implementation of the cq lookup argument." https://github.com/geometryxyz/cq/commit/c0e499cdf866631b5079a2ae6837e26df784d0eb. Accessed: 2024-07-28.
[59] han0110, "Fractional sum check implementation in plonkish." https://github.com/han0110/plonkish/blob/main/plonkish_backend/src/piop/gkr/fractional_sum_check.rs. Accessed: 2024-07-28.
[60] a16z crypto, "Jolt: Snarks for virtual machines via lookups." https://github.com/a16z/jolt/commit/a2eb0ad5bc1b96b73480b2dc4d95199e2efe3a7a. Accessed: 2024-07-28.
[61] DoHoonKim8, "halo2-lasso: An implementation of lasso lookup argument in halo2." https://github.com/DoHoonKim8/halo2-lasso/pull/4. Accessed: 2024-07-28.
[62] nooma 42, "Lasso integration modifications." https://github.com/nooma-42/Lookup-Argument/commit/47acf4f764586fc3e83cea54de60e002c477b6b2. Accessed: 2024-07-28.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98718-
dc.description.abstract摘要
零知識證明 (Zero-knowledge proofs, ZKP) 是區塊鏈擴展性與隱私保護的關鍵技術,尤其在 ZK rollup 解決方案中扮演核心角色,其透過將大量計算轉移至鏈下,有效提升交易吞吐量。然而,在這些系統中證明複雜的運算(例如虛擬機器的單個操作碼)仍然是主要的性能瓶頸。為此,查找論證 (Lookup Argument) 已成為一項關鍵的最佳化技術,它允許計算步驟的有效性可以根據預定義的表格進行高效驗證,從而避免了成本高昂的算術化過程。
儘管現存多種查找論證協定——包含 Plookup、Caulk、Baloo、CQ、Lasso 與 LogupGKR——各自具備不同的理論複雜度,但市場上始終缺乏一份全面性的實證效能比較,以指導開發者在實際應用中的選擇。
本論文對該領域作出四項關鍵貢獻:首先,我們增強並擴展了一個統一的 Rust 基準測試框架,提供多線性與單變數多項式版本,為未來查找論證研究奠定標準化基礎。其次,我們對六個主流協議進行了廣泛的基準測試,系統性地評估了在不同表格大小與查找密度下的證明者時間、驗證者時間、證明大小及預處理成本。第三,我們發現並解釋了 Lasso 的證明大小在 $K=12$ 時反直覺地減少的現象,揭示了均勻 Limb 分解 (uniform limb decomposition) 能在多項式承諾方案中實現更高效的批次處理。第四,我們確定了最佳的混合表格查找策略:小表格應使用 LogUp GKR,而大表格則受益於 Lasso 的分解方法。
研究結果從實證角度驗證了查找論證的技術演化路徑:從 Plookup 對表格大小的線性依賴 (O(N)),到 Caulk 雖然解決了前者問題卻引入了查找數量的平方級瓶頸 (O(n^2)),再到 Baloo 與 CQ 成功將其提升至準線性效率。更重要的是,本研究揭示了 Lasso 與 LogupGKR 等現代協議實現了性能上的典範移轉 (paradigm shift),其證明者時間不僅比前代協議快上數個數量級,且在測試範圍內幾乎不受表格大小與查找數量的影響。
本論文的結論指出,最佳查找協議的選擇並非絕對,而是一個高度依賴於應用場景的工程決策,涉及在證明者時間、驗證成本、證明大小與預處理開銷之間的多維度權衡。我們提供的實證數據,成功地彌合了漸進理論與現實性能之間的鴻溝,為下一代零知識證明系統的開發者提供了關鍵且實用的選型指南。
zh_TW
dc.description.abstractAbstract
Zero-knowledge proofs (ZKPs) are foundational to blockchain scalability and privacy, particularly in ZK-rollups, which enhance transaction throughput by offloading computation from the main chain. However, proving complex operations within these systems, such as individual virtual machine opcodes, remains a significant performance bottleneck. Lookup arguments have emerged as a critical optimization, enabling the efficient verification of computational steps against pre-defined tables, thereby avoiding costly arithmetization. While a proliferation of lookup protocols—including Plookup, Caulk, Baloo, CQ, Lasso, and LogupGKR—offer diverse theoretical complexities, a comprehensive empirical comparison to guide practical implementation has been lacking.
This thesis makes four key contributions to the field: First, we enhanced and extended a unified Rust-based benchmarking framework that provides both multilinear and univariate polynomial versions, creating a standardized foundation for future lookup argument research. Second, we conducted an extensive benchmark of six prominent protocols, systematically evaluating prover time, verifier time, proof size, and preprocessing costs under varying table sizes and lookup densities. Third, we discovered and explained why Lasso's proof size counter-intuitively decreases at $K=12$, revealing that uniform limb decomposition enables more efficient batch processing in the Polynomial Commitment Scheme. Fourth, we identified an optimal hybrid table lookup strategy where small tables should use LogUp GKR while large tables benefit from Lasso's decomposition method.
Our results empirically validate the theoretical evolution of these protocols, charting the progression from Plookup's table-size dependency (O(N)) and Caulk's lookup-count bottleneck (O(n^2)) to the quasi-linear efficiency of Baloo and CQ. Furthermore, we demonstrate that modern protocols like Lasso and LogupGKR achieve a paradigm shift in performance, offering prover times that are orders of magnitude faster and largely independent of table and lookup size within the tested ranges. This study concludes that the optimal choice of a lookup protocol is a highly context-dependent engineering decision, involving trade-offs between prover time, verification cost, proof size, and preprocessing overhead. The empirical data herein provides a crucial, practical guide for developers, bridging the gap between asymptotic theory and real-world performance to inform protocol selection in next-generation ZK-based systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:13:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:13:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄列表
- 口試委員審定書 - i
- Acknowledgements - ii
- 摘要 - iii
- Abstract - v
- Contents - vii
- List of Figures - xiii
- List of Tables - xiv
Chapter 1: Introduction - 1
1.1 Research Introduction - 1
1.2 Research Contributions - 3
1.3 Research Motivation - 4
Chapter 2: Background - 6
2.1 Key Properties of Zero-Knowledge Proofs - 6
2.2 Interactive and Probabilistic Proofs: Incorporating Interaction and Randomness - 7
2.3 Arithmetic circuit - 8
2.4 What's NARK, SNARK, and zkSNARK - 10
2.5 The Preprocessing Setup (S) in SNARKs - 12
2.5.1 Types of Preprocessing Setups - 12
2.6 General Construction Paradigm for SNARKs - 14
2.7 Functional Commitment Scheme - 16
2.8 Schwartz-Zippel Lemma and Fiat-Shamir Transform to Enable Polynomial Zero Test and Equality Test - 18
2.9 IOP, Polynomial IOP - 19
2.10 Application of SNARK: Rollups as a Layer 2 Solution - 22
2.10.1 The Need for Scalability and the Rise of Rollups - 22
2.10.2 Zero-Knowledge Rollups and a ZK-EVM/ZK-VM - 22
2.10.3 General Toolchain for SNARK Development - 25
2.11 Introduction to Lookup Arguments - 26
2.12 Lookup Argument Example - 29
2.12.1 Range Proof - 29
2.12.1.1 Membership Testing via Lookup Argument - 29
2.12.1.2 Bit Decomposition - 30
2.12.2 SHA-256 - 31
2.12.2.1 SHA-256 Compression Round - 32
2.12.2.2 Core Functions Implementation via Lookup Arguments - 32
2.13 Why Lookup "Argument" not Lookup "Proof" - 34
2.14 Motivation for Benchmarking Lookup Arguments - 35
2.15 Rationale for Protocol Selection - 38
2.16 Theoretical Comparison of Lookup Arguments - 38
2.17 Key Differences and Evolution of Lookup Arguments - 43
2.17.1 Plookup - 43
2.17.1.1 Definitions - 44
2.17.1.2 The Protocol - 45
2.17.1.3 Integration with the Plonk Protocol - 46
2.17.1.4 Costs and Performance Characteristics - 47
2.17.1.5 Generalizations and Optimizations - 48
2.17.2 Caulk - 48
2.17.2.1 Definitions - 49
2.17.2.2 The Protocol - 50
2.17.2.3 Costs and Performance Characteristics - 52
2.17.2.4 Generalizations and Optimizations - 52
2.17.3 Baloo - 53
2.17.3.1 Core Components and Identities - 53
2.17.3.2 The Protocol - 54
2.17.3.3 Costs and Performance Characteristics - 55
2.17.3.4 Generalizations and Variants - 56
2.17.4 CQ (Cached Quotients) - 56
2.17.4.1 Core Idea and Key Equations - 56
2.17.4.2 The Protocol - 57
2.17.4.3 Costs and Performance Characteristics - 58
2.17.4.4 Generalizations and Variants - 58
2.17.5 LogupGKR - 59
2.17.5.1 Core Argument and GKR Application - 59
2.17.5.2 The Protocol (GKR Interaction Summary) - 60
2.17.5.3 Final Verification via Polynomial Commitments - 60
2.17.5.4 Costs and Performance Characteristics - 61
2.17.5.5 Generalizations and Variants - 62
2.17.6 Lasso - 63
2.17.6.1 Core Concepts and Variants - 63
2.17.6.2 Offline Memory Checking - 63
2.17.6.3 Spark (Sparse Polynomial Commitments) - 64
2.17.6.4 Surge (Decomposable Tables) - 64
2.17.6.5 Generalized Lasso (MLE-Structured Tables) - 65
2.17.6.6 The Protocol (Conceptual Flow for Variants) - 65
2.17.6.7 Costs and Performance Characteristics - 66
2.17.6.8 Generalizations and Variants - 66
Chapter 3: Design and Experiment - 70
3.1 Implementation Framework and Reference Implementations - 70
3.2 Integration of Heterogeneous Lookup Arguments - 72
3.2.1 Challenge: Heterogeneous Interfaces and Data Models - 72
3.2.1.1 Different Input Data Structures - 72
3.2.1.2 Differences in Proof Processes and Parameter Generation - 73
3.2.2 Integration and Abstraction of Underlying Libraries - 73
3.2.2.1 PlonkishBackend Trait - 73
3.2.2.2 Abstractions for Polynomial Commitment Schemes - 74
3.2.3 Shared Cryptographic Components for Fair Benchmarking - 74
3.2.3.1 Polynomial Commitment Scheme Decoupling - 74
3.2.3.2 Unified Sum-Check Protocol - 75
3.2.3.3 Standardized Arithmetic Operations - 75
3.2.3.4 Fiat-Shamir Transcript Standardization - 76
3.2.4 Experimental Framework and Design - 76
3.2.4.1 Implementation Framework - 76
3.2.4.2 Evaluation Metrics and Scenario Design - 77
3.2.4.3 Data Collection and Analysis - 79
Chapter 4: Evaluation and Discussion - 81
4.1 Performance Analysis and Visualization - 81
4.1.1 Overall System Performance Comparison - 81
4.1.1.1 Graph Interpretation - 81
4.1.1.2 Performance Analysis - 82
4.1.1.3 Effect of the N:n Ratio - 83
4.1.1.4 Baloo Discrepancy and Caulk Implementation Bottleneck - 83
4.1.1.5 Crossover Analysis: Lasso vs. LogupGKR - 84
4.1.1.6 Interpretation of the Trend - 86
4.1.1.7 Validation of Caulk's Implementation Bottleneck - 87
4.1.1.8 Baloo Discrepancy - 88
4.2 Setup Time Performance Analysis - 89
4.2.1 Experimental Setup and Methodology - 89
4.2.2 Protocol Classification and Performance Characteristics - 90
4.2.2.1 Linear Setup Time Protocols (O(N) Complexity) - 90
4.2.2.2 Sub-linear Setup Time Protocols (O(n) Complexity) - 91
4.3 Proof Size and Verification Time Analysis - 92
4.3.1 Proof Size Characteristics - 93
4.3.1.1 GKR-Based Protocols (LogupGKR, Lasso) - 93
4.3.1.2 Permutation and Polynomial-Based Protocols (Plookup) - 93
4.3.2 Why Lasso's Proof Size Decreases at K=12? - 94
4.3.3 Verification Time Analysis - 96
4.3.3.1 Table Size Independence - 96
4.3.3.2 Protocol Performance Stratification - 96
4.4 Completness and Soundness - 97
4.5 Theoretical and Experimental Analysis - 98
4.5.1 Plookup - 98
4.5.2 Caulk - 99
4.5.3 Baloo and CQ - 100
4.5.4 Lasso and LogupGKR - 101
4.5.5 Practical Implications and Design Trade-offs - 102
4.5.5.1 Secondary Importance Justification - 102
4.5.5.2 Design Philosophy Implications - 103
4.5.6 Conclusion - 103
Chapter 5: Conclusion and Future Work - 105
5.1 Summary of Key Findings - 105
5.2 Limitations of the Study - 107
5.3 Future Work and Open Questions - 108
5.3.1 Expanding Benchmarking Scenarios - 108
5.3.1.1 Dynamic and Vector Lookups - 108
5.3.1.2 Performance in Recursive and Accumulative Settings - 109
5.3.2 Analysis of Advanced Protocol Features - 109
5.3.2.1 Homomorphism and Aggregatability - 110
5.3.2.2 Cross-Implementation Benchmarking - 110
5.3.3 Application-Oriented Protocol Selection - 110
References - 112
-
dc.language.isoen-
dc.subject零知識簡潔非交互式知識論證zh_TW
dc.subject查表論證zh_TW
dc.subject多項式承諾zh_TW
dc.subjectPolynomial Commitment Schemesen
dc.subjectLookup Argumenten
dc.subjectzk-SNARKsen
dc.title現代零知識查找論證的比較性能分析zh_TW
dc.titleA Comparative Performance Analysis of Modern Zero-Knowledge Lookup Argumentsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇中才;鄭振牟;盧瑞山;黃敬群zh_TW
dc.contributor.oralexamcommitteeChung-Tsai Su;Chen-Mou Cheng;Rui-Shan Lu;Ching-Chun Huangen
dc.subject.keyword查表論證,零知識簡潔非交互式知識論證,多項式承諾,zh_TW
dc.subject.keywordLookup Argument,zk-SNARKs,Polynomial Commitment Schemes,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202503318-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved