Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98717Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 莊裕澤 | zh_TW |
| dc.contributor.advisor | Yuh-Jzer Joung | en |
| dc.contributor.author | 劉倍嘉 | zh_TW |
| dc.contributor.author | Pei-Chia Liu | en |
| dc.date.accessioned | 2025-08-18T16:13:02Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Abuljadail, M., & Ha, L. (2019). Engagement and brand loyalty through social capital in social media. International Journal of Internet Marketing and Advertising, 13(3), 197–217. https://doi.org/10. 1504/IJIMA.2019.102557
Akoglu, L. (2014). Quantifying political polarity based on bipartite opinion networks. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 2-11. https://doi.org/10.1609/icwsm.v8i1.14524 Baldus, B. J., Voorhees, C., & Calantone, R. (2014). Online brand community engagement: Scale development and validation. Journal of Business Research, 68(5), 978–985. https://doi.org/10.1016/j.jbusres.2014.09.035 Benslimane, S., Azé, J., Bringay, S., Servajean, M., & Mollevi, C. (2022). A text and GNN based controversy detection method on social media. World Wide Web, 26(2), 799–825. https://doi.org/10.1007/s11280-022-01116-0 Bowden, J. (2009). The process of customer engagement: A conceptual framework. Journal of Marketing Theory and Practice, 17(1), 63–74. Buss, D. M. (1990). The evolution of anxiety and social exclusion. Journal of Social and Clinical Psychology, 9(2), 196–201. https://doi.org/10.1521/jscp.1990.9.2.196 Chen, Z. (2024). Exploring influences on user engagement in online platforms: three studies on user-generated content. [Doctoral dissertation, The Hong Kong Polytechnic University]. https://theses.lib.polyu.edu.hk/handle/200/13143 Chen, Z., & Berger, J. (2013). When, why, and how controversy causes conversation. Journal of Consumer Research, 40(3), 580–593. https://doi.org/10.1086/671465 Cvijikj, I. P., & Michahelles, F. (2013). Online engagement factors on Facebook brand pages. Social Network Analysis and Mining, 3(4), 843–861. https://doi.org/10.1007/s13278-013-0098-8 Diamond, E. P. (2020). The Influence of Identity salience on Framing Effectiveness: an experiment. Political Psychology, 41(6), 1133–1150. https://doi.org/10.1111/pops.12669 Davis, S. W., Horváth, C., Gretry, A., & Belei, N. (2019). Say what? How the interplay of tweet readability and brand hedonism affects consumer engagement. Journal of Business Research, 100, 150–164. https://doi.org/10.1016/j.jbusres.2019.01.071 Del Mar Gálvez-Rodríguez, M., Alonso-Cañadas, J., Haro-De-Rosario, A., & Caba-Pérez, C. (2020). Exploring best practices for online engagement via Facebook with local destination management organisations (DMOs) in Europe: A longitudinal analysis. Tourism Management Perspectives, 34, 100636. https://doi.org/10.1016/j.tmp.2020.100636 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 4171–4186. Fanni, S. C., Febi, M., Aghakhanyan, G., & Neri, E. (2023). Natural language processing. Introduction to Artificial Intelligence, 87–99. Garimella, K., De Francisci Morales, G., Gionis, A., & Mathioudakis, M. (2018b). Quantifying controversy on social media. ACM Transactions on Social Computing, 1(1), 1–27. https://doi.org/10.1145/3140565 Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M. (2017). Reducing controversy by connecting opposing views. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 81–90. Gkikas, D. C., Tzafilkou, K., Theodoridis, P. K., Garmpis, A., & Gkikas, M. C. (2022). How do text characteristics impact user engagement in social media posts: Modeling content readability, length, and hashtags number in Facebook. International Journal of Information Management Data Insights, 2(1), 1–9. Guo, Y., Lu, Z., Kuang, H., & Wang, C. (2020). Information avoidance behavior on social network sites: Information irrelevance, overload, and the moderating role of time pressure. International Journal of Information Management, 52, Article 102067. Hernandez-Bocanegra, D. C., Borchert, A., Brünker, F., Shahi, G. K., Ross, B. (2020). Towards a better understanding of online influence: Differences in twitter communication between companies and influencers. arXiv preprint arXiv: arXiv:2202.07986. Hessel, J., & Lee, L. (2019). Something’s brewing! Early prediction of controversy-causing posts from discussion features. Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1648–1659. Jaakkola, E., & Alexander, M. (2014). The role of customer engagement behavior in value co-creation: A service system perspective. Journal of Service Research, 17(3), 247–261. https://doi.org/ 10.1177/1094670514529187 Jhangiani, R & Tarry, H. (2022). Principles of Social Psychology – 1st International H5P Edition. BCcampus. Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes rules! https://doi.org/10.1201/9780429288340 Li, Y., He, H., Wang, S., Lau, F. C. M., & Song, Y. (2023). Improved target-specific stance detection on social media platforms by delving into conversation threads. IEEE Transactions on Computational Social Systems, 10(6), 3031–3042. Li, P., Fu, T., & Ma, W. (2020). Why attention? Analyze BILSTM deficiency and its remedies in the case of NER. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8236–8244. https://doi.org/10.1609/aaai.v34i05.6338 McInnes, L., Healy, J., Saul, N., Groβberger, L. (2018). UMAP: Uniform manifold approximation and projection. Journal of Open Source Software, 3(29), 861. https://doi.org/10.21105/joss.0086 Moran, G., Muzellec, L., & Johnson, D. (2019). Message content features and social media engagement: Evidence from the media industry. Journal of Product & Brand Management, 29(5), 533–545. https://doi.org/10.1108/jpbm-09-2018-2014 Noguti, V. (2016). Post language and user engagement in online content communities. European Journal of Marketing, 50(5/6), 695–723. https://doi.org/10.1108/ejm-12-2014-0785 Pancer, E., Chandler, V., Poole, M., & Noseworthy, T. J. (2018). How readability shapes social media engagement. Journal of Consumer Psychology, 29(2), 262–270. https://doi.org/10.1002/jcpy.1073 Pancer, E., & Poole, M. (2016). The popularity and virality of political social media: Hashtags, mentions, and links predict likes and retweets of 2016 U.S. presidential nominees’ tweets. Social Influence, 11(4), 259–270. https://doi.org/10.1080/15534510.2016.1265582 Penney, J. (2019). ‘It’s So Hard Not to be Funny in This Situation’: Memes and Humor in U.S. Youth Online Political Expression. Television & New Media, 21(8), 791–806. https://doi.org/10.1177/1527476419886068 Plass, J. L., Kalyuga, S., & Leutner, D. (2019). Four Ways of Considering Emotion in Cognitive Load Theory. Educational Psychology Review, 31(2), 339–359. Rashed, A., Kutlu, M., Darwish, K., Elsayed, T., & Bayrak, C. (2021). Embeddings-based clustering for target specific stances: The case of a polarized Turkey. Proceedings of the International AAAI Conference on Web and Social Media, 15, 537-548. https://doi.org/10.1609/icwsm.v15i1.18082 Rho, E. H. R., & Mazmanian, M. (2019). Hashtag Burnout? A control experiment investigating how political hashtags shape reactions to news content. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–25. https://doi.org/10.1145/3359299 Sabate, F., Berbegal-Mirabent, J., Cañabate, A., & Lebherz, P. R. (2014). Factors influencing popularity of branded content in Facebook fan pages. European Management Journal, 32(6), 1001–1011. https://doi.org/10.1016/j.emj.2014.05.001. Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/mis0742-1222290408 Surucu-Balci, E., Balci, G., & Yuen, K. F. (2019). Social media engagement of Stakeholders: A decision tree approach in container shipping. Computers in Industry, 115, 103152. https://doi.org/10.1016/j.compind.2019.103152 Sweeny, K., Melnyk, D., Miller, W., & Shepperd, J. A. (2010). Information avoidance: Who, what, when, and why. Review of General Psychology, 14(4), 340–353. Tian, H., Gao, C., Xiao, X., Liu H., He, B., Wu, H., Wang, H., & Wu, F. (2020). SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 4067–4076. Trunfio, M., Rossi, S. Conceptualising and measuring social media engagement: A systematic literature review. Italian Journal of Marketing, 2021(3), 267–292. https://doi.org/10.1007/s43039-021-00035-8 Tsimonis, G., Dimitriadis, S., & Omar, S. (2019). An integrative typology of relational benefits and costs in social media brand pages. International Journal of Market Research, 62(2), 216–233. https://doi.org/10.1177/1470785318822270 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008. Wang, H., Wang, Y., Song, X., Zhou, B., Zhao, X., & Xie, F. (2023). Quantifying controversy from stance, sentiment, offensiveness and sarcasm: A fine-grained controversy intensity measurement framework on a Chinese dataset. World Wide Web, 26(5), 3607–3632. https://doi.org/10.1007/s11280-023-01191-x Wang, S., Chen, Z., Liu, B., & Emery, S. (2016). Identifying search keywords for finding relevant social media posts. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). https://doi.org/10.1609/aaai.v30i1.10387 Wang, Y., & Zhao, Y. (2023). Gemini in reasoning: Unveiling commonsense in multimodal large language models. arXiv preprint arXiv:2312.17661. Wieczerzycki, M. (2021). Power asymmetry and value creation in B2C relationship networks. International Journal of Management and Economics, 57(2), 161–176. https://doi.org/10.2478/ijme-2021-0006 Weiger, W. H., Hammerschmidt, M., & Wetzel, H. A. (2018). Don’t You Dare Push Me: How persuasive social media tactics shape customer engagement. Journal of the Association for Consumer Research, 3(3), 364–378. https://doi.org/10.1086/698713 Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant N., Abrego, G. H., Yuan S., Tar, C., Sung, Y. H., Strope, B., Kurzweil, R. (2020). Multilingual universal sentence encoder for semantic retrieval. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 87–94. Yang, T., & Peng, Y. (2020). The importance of trending topics in the gatekeeping of social media news engagement: A natural experiment on Weibo. Communication Research, 49(7), 994–1015. https://doi.org/10.1177/0093650220933729 Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W. L., Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. Neural Information Processing Systems, 31, 4805–4815. Zhang, S., Xie, L. (2020). Improving attention mechanism in graph neural networks via cardinality preservation. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 1395–1402. Zhong, L., Cao, J., Sheng, Q., Guo, J., & Wang, Z. (2020). Integrating semantic and structural information with graph convolutional network for controversy detection. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 515–526. https://doi.org/10.18653/v1/2020.acl-main.49 葉家瑋(2022)。民主制度下的意識形態娛樂化分析:以蔡英文政府為例。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/75sudq。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98717 | - |
| dc.description.abstract | 隨著社群媒體的快速發展,內容創作者積極的尋找能提升使用者參與度的關鍵因素,但由於網路平台的特色迥異,不僅影響到了創作者的營運方向,也吸引到了不同特質的使用者群體,使得單一的標準無法適用於所有社群平台,因此相關研究百花齊放。此外,文章往往因為本身主題的關係,而帶著與生俱來、或高或低的爭議性,對使用者討論度造成顯著影響。本研究以留言數作為討論度的衡量指標,旨在並透過分析各式調節變數,找出能左右爭議性與討論度的關係之因子。
本研究以Facebook上的文章為對象,透過其留言內容來計算文章的爭議性,並探討調節變數的介入將如何使爭議性與討論度的關係產生變化,希望能協助社群媒體上的內容創作者制定創作策略。本研究利用大型語言模型GPT-4o以及Gemini 2.0 Flash進行爭議性計算,並透過迴歸分析驗證爭議性與討論度的關係。 | zh_TW |
| dc.description.abstract | As social media continues to evolve rapidly, content creators have been actively seeking key factors that can enhance user engagement. However, due to the distinct characteristics of different platforms, the operational strategies of creators are affected, and varying user groups are attracted, making it impractical to apply a single standard across all social media. As a result, related studies have been flourishing. Among the factors influencing engagement, controversy plays a significant role, as posts often intrinsically carry different degrees of controversy depending on their topics, which in turn shapes the level of user discussion and overall engagement. This study conceptualizes user discussion as the number of comments, and further seeks to identify the key factors that are able to influence the relationship between controversy and discussion through the analysis of various moderating variables.
The target of this study is the posts from Facebook pages. We quantify post-level controversy based on the content of the comments and examine how the intervention of moderating variables affects the relationship between controversy and discussion, in the hope of assisting content creators on social media to develop more effective content strategies. This study utilizes large language models, such as GPT-4o and Gemini 2.0 Flash, to facilitate the quantification of controversy, and applies regression models to validate the influence of controversy on discussion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:13:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:13:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 圖次 VI 表次 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 第二章 文獻探討 3 2.1 影響社群媒體參與度的因子 3 2.2 爭議性的評估 6 2.3 爭議性與討論度的關係 8 2.4 自然語言處理與大型語言模型 11 2.5 小結 12 第三章 研究方法 13 3.1 研究架構 13 3.1.1 Prompt 15 3.1.2 模型表現與微調方法 16 3.1.3 爭議性公式 18 3.2 資料集 19 3.3 調節變數選擇 20 3.4 模型選擇 23 第四章 研究結果 25 4.1發文時間的調節效果 27 4.1.1科技 28 4.1.2娛樂 30 4.1.3交通 30 4.1.4政治 31 4.2命名實體的調節效果 33 4.2.1科技 33 4.2.2娛樂 34 4.2.3交通 35 4.2.4政治 37 4.3 CTA的調節效果 38 4.3.1科技 38 4.3.2娛樂 39 4.3.3交通 40 4.3.4政治 43 4.4 文章長度的調節效果 43 4.5 小結 44 第五章 結論 46 5.1 研究結果 46 5.2 研究貢獻 47 5.3 研究限制 48 5.4 未來研究方向 49 參考文獻 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 內容策略 | zh_TW |
| dc.subject | 使用者參與 | zh_TW |
| dc.subject | 社群媒體 | zh_TW |
| dc.subject | 爭議性 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | User engagement | en |
| dc.subject | Controversy | en |
| dc.subject | Content strategy | en |
| dc.subject | Large language models | en |
| dc.subject | Social media | en |
| dc.title | Facebook 貼文之爭議性與討論度關係的調節變數分析 | zh_TW |
| dc.title | Analysis of Moderating Variables in the Relationship Between Controversy and Discussion of Facebook Posts | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏志平;陳建錦;彭志宏;林俊叡 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ping Wei;Chien-Chin Chen;Chih-Hung Peng;Chun-Jui Lin | en |
| dc.subject.keyword | 社群媒體,使用者參與,爭議性,內容策略,大型語言模型, | zh_TW |
| dc.subject.keyword | Social media,User engagement,Controversy,Content strategy,Large language models, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202504091 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| Appears in Collections: | 資訊管理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 5.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
