請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | zh_TW |
| dc.contributor.advisor | Chih-I Wu | en |
| dc.contributor.author | 施奕華 | zh_TW |
| dc.contributor.author | Yi-Hua Shih | en |
| dc.date.accessioned | 2025-08-18T16:10:38Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | [1] G. E. Moore, "Progress in digital integrated electronics," in Electron devices meeting, 1975, vol. 21: Washington, DC, pp. 11–13.
[2] G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998. [3] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials today, vol. 9, no. 6, pp. 20–25, 2006. [4] T. Ghani et al., "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors," in IEEE International Electron Devices Meeting 2003, 2003: IEEE, pp. 11.6. 1–11.6. 3. [5] B. J. Lin, "Optical lithography—present and future challenges," Comptes Rendus Physique, vol. 7, no. 8, pp. 858–874, 2006. [6] H. Iwai, "Roadmap for 22 nm and beyond," Microelectronic Engineering, vol. 86, no. 7-9, pp. 1520–1528, 2009. [7] J. Hutchby, "The nanoelectronics roadmap," Emerging Nanoelectronic Devices, pp. 1–14, 2014. [8] T. Wei, Z. Han, X. Zhong, Q. Xiao, T. Liu, and D. Xiang, "Two dimensional semiconducting materials for ultimately scaled transistors," IScience, vol. 25, no. 10, 2022. [9] J.-S. Kim et al., "Addressing interconnect challenges for enhanced computing performance," Science, vol. 386, no. 6727, p. eadk6189, 2024. [10] 蕭宏, 半導體製程技術導論(第三版). 台北, 2022. [11] B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, "Reliability challenges for copper interconnects," Microelectronics Reliability, vol. 44, no. 3, pp. 365–380, 2004. [12] A. L. S. Loke, Process integration issues of low-permittivity dielectrics with copper for high-performance interconnects. Stanford University, 1999. [13] K. Zhao, Y. Hu, G. Du, Y. Zhao, and J. Dong, "Mechanisms of scaling effect for emerging nanoscale interconnect materials," Nanomaterials, vol. 12, no. 10, p. 1760, 2022. [14] C.-L. Lo, K. Zhang, J. A. Robinson, and Z. Chen, "BEOL compatible sub-nm diffusion barrier for advanced Cu interconnects," in 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2018: IEEE, pp. 1–2. [15] K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals," in Mathematical Proceedings of the Cambridge Philosophical Society, 1938, vol. 34, no. 1: Cambridge University Press, pp. 100–108. [16] A. Mayadas and M. Shatzkes, "Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces," Physical review B, vol. 1, no. 4, p. 1382, 1970. [17] D. Gall, "The search for the most conductive metal for narrow interconnect lines," Journal of Applied Physics, vol. 127, no. 5, 2020. [18] J. Kelly et al., "Experimental study of nanoscale Co damascene BEOL interconnect structures," in 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), 2016: IEEE, pp. 40–42. [19] K. Croes et al., "Interconnect metals beyond copper: Reliability challenges and opportunities," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 5.3. 1–5.3. 4. [20] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666–669, 2004. [21] N. D. Mermin, "Crystalline order in two dimensions," Physical review, vol. 176, no. 1, p. 250, 1968. [22] J. Clark. Electronic structure and orbitals [Online] Available: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Electronic_Configurations/Electronic_Structure_and_Orbitals [23] S. Cortes. Hybridization of Carbon [Online] Available: https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_I_(Cortes)/05%3A_Orbital_Picture_of_Bonding-_Orbital_Combinations_Hybridization_Theory_and_Molecular_Orbitals/5.04%3A_Hybridization_of_Carbon [24] F. Banhart, "Elemental carbon in the sp 1 hybridization," ChemTexts, vol. 6, no. 1, p. 3, 2019. [25] Sp2-Hybridized Orbitals [Online] Available: https://chemistryscore.com/definition/sp2-hybridized-orbitals/ [26] F. Sayed, M. Parmar, and S. Auti, "A review on graphene," in Proceedings of International Conference on Intelligent Manufacturing and Automation: ICIMA 2018, 2018: Springer, pp. 323–331. [27] G. Dresselhaus, M. S. Dresselhaus, and R. Saito, Physical properties of carbon nanotubes. World scientific, 1998. [28] Graphene - Electronic Structure and Transport Properties [Online] Available: https://www.azonano.com/article.aspx?ArticleID=4841 [29] G. J. Miller. Graphene - Bands [30] Y. Wu, D. B. Farmer, F. Xia, and P. Avouris, "Graphene electronics: Materials, devices, and circuits," Proceedings of the IEEE, vol. 101, no. 7, pp. 1620–1637, 2013. [31] Graphene: The Wonder Material of the Future [Online] Available: https://quantumzeitgeist.com/graphene-the-wonder-material-of-the-future/ [32] K. Novoselov and A. C. Neto, "Two-dimensional crystals-based heterostructures: materials with tailored properties," Physica Scripta, vol. 2012, no. T146, p. 014006, 2012. [33] H. Ago, "CVD growth of high-quality single-layer graphene," Frontiers of Graphene and Carbon Nanotubes: Devices and Applications, pp. 3–20, 2015. [34] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature nanotechnology, vol. 3, no. 5, pp. 270–274, 2008. [35] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano letters, vol. 7, no. 11, pp. 3394–3398, 2007. [36] H. Bai, C. Li, and G. Shi, "Functional composite materials based on chemically converted graphene," Advanced Materials, vol. 23, no. 9, pp. 1089–1115, 2011. [37] K. V. Emtsev et al., "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nature materials, vol. 8, no. 3, pp. 203–207, 2009. [38] C. Berger et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, no. 5777, pp. 1191–1196, 2006. [39] G. R. Yazdi, T. Iakimov, and R. Yakimova, "Epitaxial graphene on SiC: a review of growth and characterization," Crystals, vol. 6, no. 5, p. 53, 2016. [40] H. C. Lee et al., "Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene," RSC advances, vol. 7, no. 26, pp. 15644–15693, 2017. [41] L. Yu, S. Yasuda, and K. Murakoshi, "Synthesis of Nanometer Size Single Layer Grapheneby Moderate Electrochemical Exfoliation," Transactions of the Materials Research Society of Japan, vol. 37, no. 2, pp. 209–212, 2012. [42] A. R. Urade, I. Lahiri, and K. Suresh, "Graphene properties, synthesis and applications: a review," Jom, vol. 75, no. 3, pp. 614–630, 2023. [43] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, "Mobility variations in mono-and multi-layer graphene films," Applied physics express, vol. 2, no. 2, p. 025003, 2009. [44] C.-L. Liang et al., "Athermal and thermal coupling electromigration effects on the microstructure and failure mechanism in advanced fine-pitch Cu interconnects under extremely high current density," Materials Chemistry and Physics, vol. 256, p. 123680, 2020. [45] K. Agashiwala, J. Jiang, K. Parto, D. Zhang, C.-H. Yeh, and K. Banerjee, "Demonstration of CMOS-compatible multi-level graphene interconnects with metal vias," IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 2083–2091, 2021. [46] J. Jiang et al., "Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects," Nano letters, vol. 17, no. 3, pp. 1482–1488, 2017. [47] T. H. Bointon, S. Russo, and M. F. Craciun, "Is graphene a good transparent electrode for photovoltaics and display applications?," IET Circuits, Devices & Systems, vol. 9, no. 6, pp. 403–412, 2015. [48] J.-Z. Huang et al., "Intercalated multilayer graphene with ultra low resistance for next-generation interconnects," ACS Applied Nano Materials, vol. 6, no. 12, pp. 10680–10686, 2023. [49] L. Wei-Bang, L. Shih-Yang, T. Ming-Shuei, L. Ming-Fa, and L. Kuang-I, "Geometric and electronic properties on stage-1 FeCl3-graphite intercalation compounds," arXiv preprint arXiv:2012.14648, 2020. [50] D. Zhan et al., "FeCl3‐based few‐layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping," Advanced Functional Materials, vol. 20, no. 20, pp. 3504–3509, 2010. [51] Z. Yan, Z. Zhuxia, L. Tianbao, L. Xuguang, and X. Bingshe, "XPS and XRD study of FeCl3–graphite intercalation compounds prepared by arc discharge in aqueous solution," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 70, no. 5, pp. 1060–1064, 2008. [52] A. Srivastava, X. Liu, and Y. Banadaki, "Overview of carbon nanotube interconnects," in Carbon nanotubes for interconnects: process, design and applications: Springer, 2016, pp. 37–80. [53] O. Balci and C. Kocabas, "Rapid thermal annealing of graphene-metal contact," Applied Physics Letters, vol. 101, no. 24, 2012. [54] E. Watanabe, A. Conwill, D. Tsuya, and Y. Koide, "Low contact resistance metals for graphene based devices," Diamond and Related Materials, vol. 24, pp. 171–174, 2012. [55] C. Malec, B. Elkus, and D. Davidović, "Vacuum-annealed Cu contacts for graphene electronics," Solid State Communications, vol. 151, no. 23, pp. 1791–1793, 2011. [56] A. Venugopal, L. Colombo, and E. Vogel, "Contact resistance in few and multilayer graphene devices," Applied Physics Letters, vol. 96, no. 1, 2010. [57] A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, and M. C. Lemme, "Contact resistance study of various metal electrodes with CVD graphene," Solid-State Electronics, vol. 125, pp. 234–239, 2016. [58] K. Nagashio and A. Toriumi, "Graphene/metal contact," Frontiers of Graphene and Carbon Nanotubes: Devices and Applications, pp. 53–78, 2015. [59] F. Xia et al., "Photocurrent imaging and efficient photon detection in a graphene transistor," Nano letters, vol. 9, no. 3, pp. 1039–1044, 2009. [60] C. A. Chavarin, A. A. Sagade, D. Neumaier, G. Bacher, and W. Mertin, "On the origin of contact resistances in graphene devices fabricated by optical lithography," Applied Physics A, vol. 122, pp. 1–5, 2016. [61] T. Cusati et al., "Electrical properties of graphene-metal contacts," Scientific reports, vol. 7, no. 1, p. 5109, 2017. [62] C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018. [63] P. Khomyakov, G. Giovannetti, P. Rusu, G. v. Brocks, J. Van den Brink, and P. J. Kelly, "First-principles study of the interaction and charge transfer between graphene and metals," Physical Review B—Condensed Matter and Materials Physics, vol. 79, no. 19, p. 195425, 2009. [64] S. Wang et al., "A more reliable measurement method for metal/graphene contact resistance," Nanotechnology, vol. 26, no. 40, p. 405706, 2015. [65] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration," Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016. [66] B. Lv, T. Qian, and H. Ding, "Angle-resolved photoemission spectroscopy and its application to topological materials," Nature Reviews Physics, vol. 1, no. 10, pp. 609–626, 2019. [67] J. M. Sofia Gaiaschi, "The New HORIBA XGT-9000: An Overview " in HORIBA SCIENTIFIC, ed. [68] J. Dai, S. Yadav, and B. Paulus, "Electronic and magnetic properties of FeCl3 intercalated bilayer graphene," C, vol. 9, no. 4, p. 95, 2023. [69] S. Li et al., "Intercalated graphene as next generation back-end-of-line conductors," in 2023 International Electron Devices Meeting (IEDM), 2023: IEEE, pp. i–iv. [70] L.-C. Hong, C. Chou, and H.-H. Lin, "Simulation on the electric field effect of Bi thin film," Solid State Electronics Letters, vol. 2, pp. 28–34, 2020. [71] Z. Ben, G. Song, Y. Chen, Y. Wu, and J. You, "Influence of Sb content on carrier transport and thermoelectric properties of flexible Bi–Sb films," Journal of Vacuum Science & Technology A, vol. 43, no. 1, 2025. [72] Z. Wang et al., "Interfacial Oxidation of Metals on Graphene," ACS Applied Nano Materials, vol. 7, no. 21, pp. 24537–24546, 2024. [73] W. Li et al., "Ultraviolet/ozone treatment to reduce metal-graphene contact resistance," Applied Physics Letters, vol. 102, no. 18, 2013. [74] J. A. Robinson et al., "Contacting graphene," Applied Physics Letters, vol. 98, no. 5, 2011. [75] H.-A. Mehedi et al., "High density H2 and He plasmas: can they be used to treat graphene?," Journal of Applied Physics, vol. 124, no. 12, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98706 | - |
| dc.description.abstract | 研究利用感應耦合電漿輔助化學氣相沉積系統,在相對低溫與短時間內成功成長出高品質的石墨烯,並透過精確調控成長時間,達到石墨烯厚度之準確控制。石墨烯經轉移至目標基板後,仍維持良好的結構品質與製程穩定性。此外,本研究藉由 FeCl₃ 插層技術,在不破壞石墨烯原有結構之下,透過強烈的電荷轉移作用,有效提高石墨烯的載子濃度並顯著降低其片電阻。透過插層調控費米能階位置,使石墨烯之導電特性獲得明顯提升,展現成為高性能後端互連(BEOL)材料的潛力。
在金屬緩衝層選擇上,本研究探討了不同功函數與導電率之金屬對接觸電阻之影響。實驗結果顯示,銀(Ag)具有極高導電率(6.3 × 10⁷ S/m)及低功函數(約4.26 eV),可有效使石墨烯費米能階遠離狄拉克點,大幅降低接觸電阻。此外,厚度增加之Ag緩衝層進一步提升此調控效果,且Co覆蓋層可作為有效防氧化保護層,穩定接觸品質。高功函數鉑(Pt)則透過將石墨烯費米能階推向高態密度區域,顯著改善接觸性能與穩定性。相較之下,雖然鈷(Co)具較高導電率,但其功函數不足以有效調控費米能階,致使其接觸電阻偏高,顯示金屬功函數在界面電子傳輸機制中扮演關鍵角色。 在界面品質改善方面,本研究採用熱退火處理與氫氣電漿(H₂ plasma)清潔技術,成功去除微影製程後之光阻與插層殘留物,並透過系統化調整電漿處理參數(例如100 W、30 s),達到最佳的界面潔淨效果。透過X光光電子能譜(XPS)分析可見sp³/sp²比例下降,原子力顯微鏡(AFM)亦顯示表面粗糙度降低,證實此方法可在避免石墨烯結構損傷的同時,有效提升界面品質並降低接觸電阻。 | zh_TW |
| dc.description.abstract | The present study successfully demonstrates the growth of high-quality graphene at relatively low temperatures and short durations via inductively coupled plasma-enhanced chemical vapor deposition. By precisely controlling growth time, accurate thickness management of graphene layers was achieved. Following transfer to the target substrate, graphene retained excellent structural integrity and demonstrated stable process quality. Additionally, FeCl₃ intercalation doping was employed, enabling a significant increase in carrier concentration and a marked reduction in sheet resistance through strong charge transfer effects without compromising graphene’s original structure. By tuning the Fermi-level position through intercalation, graphene's electrical conductivity was notably enhanced, highlighting its great potential as a high-performance back-end-of-line (BEOL) interconnect material.
Regarding the choice of metallic buffer layers, the effects of different metal work functions and conductivities on graphene–metal contact resistance were thoroughly investigated. Experimental results reveal that silver (Ag), exhibiting an extremely high conductivity (6.3 × 10⁷ S/m) and a low work function (~4.26 eV), effectively shifts graphene’s Fermi level away from the Dirac point, significantly reducing contact resistance. Increasing the thickness of the Ag buffer layer further strengthened this modulation effect. Moreover, the addition of a cobalt (Co) capping layer effectively prevented oxidation, thereby stabilizing the contact interface quality. On the other hand, platinum (Pt), characterized by a high work function, considerably improved the contact performance and stability by shifting graphene's Fermi level into a higher density-of-states region. In contrast, cobalt (Co), despite its relatively high conductivity, exhibited higher contact resistance due to its insufficient work function to effectively modulate graphene's Fermi level, highlighting the critical role played by metal work functions in interfacial electron transport. To improve interfacial quality, thermal annealing and hydrogen plasma (H₂ plasma) treatments were implemented, successfully removing photoresist and intercalation residues from the lithography processes. By systematically optimizing plasma parameters (e.g., 100 W, 30 s), optimal interface cleaning conditions were determined. X-ray photoelectron spectroscopy (XPS) analysis confirmed a reduction in the sp³/sp² ratio, and atomic force microscopy (AFM) demonstrated reduced surface roughness, verifying that this approach effectively improved interface quality and reduced contact resistance without compromising graphene structural integrity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:10:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:10:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii 誌謝 iv 目次 vi 圖次 x 表次 xviii 1 第一章 緒論 1 1.1 半導體製程演進 1 1.2 半導體後端製程重要性 4 1.2.1 互連導線進程 5 1.2.2 銅導線發展與挑戰 6 1.2.3 互連導線替代材料 8 1.3 石墨烯簡介 11 1.3.1 石墨烯的起源 11 1.3.2 石墨烯的能帶結構 12 1.3.3 石墨烯的能帶結構與特性 15 1.3.4 石墨烯的製備方式 16 1.4 多層石墨烯與插層石墨烯 22 1.4.1 多層石墨烯 22 1.4.2 插層石墨烯(Graphite Intercalation Compounds, GIC) 25 1.5 石墨烯接觸電阻問題與常用量測方法 28 1.5.1 接觸電阻 28 1.5.2 接觸電阻量測手法 34 1.6 研究動機 37 2 第二章 實驗設備與理論 39 2.1 製程設備簡介 39 2.1.1 感應耦合型電漿輔助化學氣相沉積系統 39 2.1.2 光罩對準式曝光機(Mask Aligner) 40 2.1.3 快速熱退火(Rapid thermal annealing, RTA) 42 2.1.4 步進式曝光機(Stepper) 42 2.1.5 電子束金屬蒸鍍機(Electron beam evaporation) 44 2.2 量測儀器簡介 46 2.2.1 拉曼光譜儀(Raman spectroscopy) 46 2.2.2 光電子能譜儀(Photoelectron Spectroscopy, PES) 47 2.2.3 原子力顯微鏡(Atomic force microscope, AFM) 49 2.2.4 電性量測 50 2.2.5 穿透式電子顯微鏡(Transmission electron microscope. TEM) 51 2.2.6 能量色散X射線光譜(Energy-Dispersive X-ray Spectroscopy, EDS) 52 2.2.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 53 2.3 實驗原理及方法 55 2.3.1 電漿的原理 55 2.3.2 感應式耦合型電漿 57 2.3.3 石墨烯生長機制 58 2.3.4 傳輸線法量測接觸電阻 61 2.3.5 石墨烯與金屬介面之光電子能譜分析 63 3 第三章 實驗流程與石墨烯品質分析 64 3.1 石墨烯導線與TLM結構樣品之製備流程 64 3.1.1 石墨烯的生長 64 3.1.2 石墨烯的薄膜轉移 65 3.1.3 石墨烯導線的製備 67 3.1.4 TLM樣品的製備 69 3.1.5 插層石墨烯導線與TLM樣品製備 72 3.1.6 PES分析之樣品製備 73 3.2 石墨烯薄膜品質分析 74 3.2.1 拉曼光譜分析 74 3.2.2 光電子能譜分析 77 4 第四章 金屬選擇與石墨烯間介面分析 80 4.1 後端製程金屬鈷與石墨烯間接觸分析 80 4.1.1 鈷與原始/插層石墨烯的接觸電阻 80 4.1.2 鈷與原始/插層石墨烯的介面分析 81 4.2 石墨烯與半金屬緩衝層之接觸電阻 86 4.2.1 半金屬鉍與原始/插層石墨烯間的接觸電阻 86 4.2.2 半金屬銻與原始/插層石墨烯間的接觸電阻 88 4.3 石墨烯與低/高功函數金屬之緩衝層間接觸特性 90 4.3.1 低功函數金屬與原始石墨烯間的接觸電阻 90 4.3.2 低功函數金屬與插層石墨烯間的接觸電阻 92 4.3.3 低功函數金屬與石墨烯間的介面分析 - XPS 93 4.3.4 低功函數金屬與石墨烯間的介面分析 - UPS 100 4.3.5 高功函數金屬與原始石墨烯間的接觸電阻 106 4.3.6 高功函數金屬與插層石墨烯間的接觸電阻 109 4.3.7 高功函數金屬與石墨烯間的介面分析 - XPS 111 4.3.8 高功函數金屬與石墨烯間的介面分析 - UPS 117 4.3.9 金屬選擇與石墨烯間的接觸電阻與介面分析結果比較 124 5 第五章 介面改善之金屬與石墨烯間接觸電阻 129 5.1 介面問題與改善方法 129 5.2 氬氣熱退火 132 5.3 Co與插層石墨烯間介面的氫氣電漿處理 133 5.3.1 氫氣電漿處理步驟 133 5.3.2 Co與插層石墨烯間介面的氫氣電漿處理 - TLM 134 5.3.3 Co與插層石墨烯間介面的氫氣電漿處理 – 拉曼光譜 136 5.3.4 Co與插層石墨烯間介面的氫氣電漿處理 – XPS能譜 142 5.3.5 Co與插層石墨烯間介面的氫氣電漿處理 – AFM 144 5.3.6 Co與插層石墨烯間介面的氫氣電漿處理 – TEM 146 6 第六章 總結 149 6.1 結論 149 6.2 未來展望 152 7 參考文獻 154 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 光電子能譜 | zh_TW |
| dc.subject | 接觸電組 | zh_TW |
| dc.subject | 插層石墨烯 | zh_TW |
| dc.subject | 感應式耦合型電漿輔助化學氣相沉積 | zh_TW |
| dc.subject | 後端製程互連 | zh_TW |
| dc.subject | Graphene | en |
| dc.subject | Intercalated graphene | en |
| dc.subject | Contact resistance | en |
| dc.subject | Photoelectron spectroscopy | en |
| dc.subject | Inductively coupled plasma-enhanced chemical vapor deposition | en |
| dc.subject | Back-end-of-line interconnect | en |
| dc.title | 藉由介面改善以優化多層石墨烯與後端製程金屬之接觸性能 | zh_TW |
| dc.title | Optimizing the Contact Performance Between Multilayer Graphene and Back-End Metal Through Interface Engineering | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳奕君;張子璿;周昂昇 | zh_TW |
| dc.contributor.oralexamcommittee | I-Chun Cheng;Tzu-Hsuan Chang;Ang-Sheng Chou | en |
| dc.subject.keyword | 石墨烯,後端製程互連,感應式耦合型電漿輔助化學氣相沉積,插層石墨烯,接觸電組,光電子能譜, | zh_TW |
| dc.subject.keyword | Graphene,Back-end-of-line interconnect,Inductively coupled plasma-enhanced chemical vapor deposition,Intercalated graphene,Contact resistance,Photoelectron spectroscopy, | en |
| dc.relation.page | 161 | - |
| dc.identifier.doi | 10.6342/NTU202503863 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
