Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何昊哲zh_TW
dc.contributor.advisorHao-Che Hoen
dc.contributor.author徐煜翔zh_TW
dc.contributor.authorYu-Hsiang Hsuen
dc.date.accessioned2025-08-18T16:10:25Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation[1] Amorim, H., Hurtarte, L. C., Souza, I. F., & Zinn, Y. L. (2022). C:N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma, 428, 116164.
[2] Analytik Jena GmbH. (2020). Product specifications: multi N/C series (Version 01.20).
[3] Avnimelech, Y., Ritvo, G., Meijer, L. E., & Kochba, M. (2001). Water content, organic carbon and dry bulk density in flooded sediments. Aquacultural Engineering, 25(1), 25–33.
[4] Bar-On, Y. M., Li, X., O'Sullivan, M., Wigneron, J.-P., Sitch, S., Ciais, P., Frankenberg, C., & Fischer, W. W. (2025). Recent gains in global terrestrial carbon stocks are mostly stored in nonliving pools. Science, 387(6672), 1291–1295.
[5] Boix-Fayos, C., Nadeu, E., Quiñonero, J. M., Martínez-Mena, M., Almagro, M., & Vente, J. (2015). Sediment flow paths and associated organic carbon dynamics across a Mediterranean catchment. Hydrology and Earth System Sciences, 19(3), 1209–1223.
[6] Bombino, G., Barbaro, G., D'Agostino, D., Denisi, P., Foti, G., Labate, A., & Zimbone, S. (2022). Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. Catena, 217, 106494.
[7] Bombino, G., Barbaro, G., D'Agostino, D., Denisi, P., Labate, A., & Zimbone, S. M. (2022). A method for estimating stored sediment volumes by check dam systems at the watershed level: Example of an application in a Mediterranean environment. Journal of Soils and Sediments, 22, 1329–1343.
[8] Brunner, G. W. (2024). HEC-RAS 2D user's manual (Version 6.6). U.S. Army Corps of Engineers, Hydrologic Engineering Center.
[9] Chen, H. E., Lin, G. W., Lu, M. H., Shih, T. Y., Horng, M. J., Wu, S. J., & Chuang, B. (2011). Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of southeastern Taiwan. Geomorphology, 133(3–4), 132–142.
[10] Chen, S. C., & Huang, B. T. (2010). Non-structural mitigation programs for sediment-related disasters after the Chichi Earthquake in Taiwan. Journal of Mountain Science, 7(3), 291–300.
[11] Conen, F., Zimmermann, M., Leifeld, J., Seth, B., & Alewell, C. (2008). Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio. Biogeosciences, 5(1), 123–128.
[12] de Bruin, B., Penning de Vries, F. W. T., van Broekhoven, L. W., Vertregt, N., & van de Geijn, S. C. (1989). Net nitrogen mineralization, nitrification and CO₂ production in alternating moisture conditions in an unfertilized low-humus sandy soil from the Sahel. Plant and Soil, 113(1), 69–78.
[13] do Prado, A. D., Mair, D., Garefalakis, P., Schmidt, C., Whittaker, A. C., Castelltort, S., & Schlunegger, F. (2024). Check dam impact on sediment loads: Example of the Guerbe River in the Swiss Alps – a catchment scale experiment. Hydrology and Earth System Sciences, 28(5), 1173–1191.
[14] Fang, N. F., Zeng, Y., Ran, L. S., Wang, Z., Lu, X. X., Wang, Z. A., Yang, X. K., Jian, J. S., Yu, Q., Ni, L. S., Liu, C., Yue, C., & Shi, Z. H. (2023). Substantial role of check dams in sediment trapping and carbon sequestration on the Chinese Loess Plateau. Communications Earth & Environment, 4(1), 65.
[15] Gualtieri, G., Dvorakova, K., Heiden, U., & Wesemael, B. (2021). Sentinel-2 Exposed Soil Composite for soil organic carbon prediction (EGU21-11153). European Geosciences Union General Assembly 2021.
[16] Guo, Y., Jiang, M., Liu, Q., Xie, Z., & Tang, Z. (2020). Climate and vegetation together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China. Plant and Soil, 456, 15–26.
[17] Hengl, T., de Jesus, J. M., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., ... & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), e0169748.
[18] Hobley, E. U., & Wilson, B. (2016). The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere, 7(1), e01214.
[19] Hsu, C.-C., Tsai, H., Huang, W.-S., & Huang, S.-T. (2021). Carbon storage along with soil profile: An example of soil chronosequence from the fluvial terraces on the Pakua tableland, Taiwan. Land, 10(5), 447.
[20] Itoh, T., Horiuchi, S., Mizuyama, T., & Kaitsuka, K. (2013). Hydraulic model tests for evaluating sediment control function with a grid-type Sabo dam in mountainous torrents. International Journal of Sediment Research, 28(4), 511–522.
[21] Kang, B.-D., Jun, K.-W., Lee, H.-J., Jang, C.-D., & Jo, H.-I. (2023). Numerical simulation reflecting buildings in area damaged by debris flow. E3S Web of Conferences, 415, 02011.
[22] Kim, M.-I., & Kim, N. (2021). Analysis of debris flow reduction effect of check dam types considering the mountain stream shape: A case study of 2016 debris flow hazard in Ulleung-do Island, South Korea. Advances in Civil Engineering, 2021, 8899368.
[23] Lal, R. (2020). Soil erosion and gaseous emissions. Applied Sciences, 10(8), 2784.
[24] Lal, R. (2021). Fate of soil carbon transported by erosional processes. Applied Sciences, 12(1), 48.
[25] Li, M. H., Sung, R. T., Dong, J. J., Lee, C. T., & Chen, C. C. (2011). The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan – Part II: Simulation of debris flow with landslide dam breach. Engineering Geology, 123(1–2), 60–71.
[26] Li, Y., Zhao, J., Yuan, K., Taye, G., & Li, L. (2023). Large-scale extraction of check dams and silted fields on the Chinese loess plateau using ensemble learning models. International Soil and Water Conservation Research, 11(2), 273–286.
[27] Liang, X., Yu, S., Meng, B., Wang, X., Yang, C., Shi, C., & Ding, J. (2025). Multi-source remote sensing and GIS-driven forest carbon monitoring for carbon neutrality: Integrating data, modeling, and policy applications. Preprints, 2025050246.
[28] Liu, C., Li, Z., Dong, Y., Nie, X., Liu, L., Xiao, H., & Zeng, G. (2017). Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China? Ecological Engineering, 101, 220–226.
[29] Liu, X., Zhang, Y., Li, P., & Xiao, L. (2024). Siltation of check dams alters microbial communities and thus limits organic carbon mineralization. Soil & Tillage Research, 236, 105949.
[30] Liu, Y., Walling, D. E., Yang, M., Zhang, F., & Zhang, J. (2024). Using the check dam deposit for an individual event to document the sources and erosional loss of sediment-associated organic carbon from a small catchment on the Chinese Loess Plateau. Catena, 237, 107831.
[31] Lucas-Borja, M. E., Piton, G., Yu, Y., Castillo, C., & Zema, D. A. (2021). Check dams worldwide: Objectives, functions, effectiveness and undesired effects. Catena, 204, 105390.
[32] Maricar, F., & Hashimoto, H. (2014). A comparison of wood-sediment-water mixture flows at a closed type and an open type of check dams in mountain rivers. In Proceedings of the 13th International Symposium on River Sedimentation (pp. 711–716).
[33] McLean, W. (1930). The carbon-nitrogen ratio of soil organic matter. The Journal of Agricultural Science, 20(3), 348–354.
[34] Meersmans, J., Van Wesemael, B., De Ridder, F., Fallas Dotti, M., De Baets, S., & Van Molle, M. (2009). Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006. Global Change Biology, 15(11), 2739–2750.
[35] Mongil-Manso, J., Díaz-Gutiérrez, V., Navarro-Hevia, J., Espina, M., & San Segundo, L. (2019). The role of check dams in retaining organic carbon and nutrients. A study case in the Sierra de Ávila mountain range (Central Spain). Science of the Total Environment, 657, 1030–1040.
[36] Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2—Chemical and microbiological properties (2nd ed., pp. 539–579). American Society of Agronomy.
[37] Oelbermann, M., & Voroney, R. P. (2011). An evaluation of the century model to predict soil organic carbon: Examples from Costa Rica and Canada. Agroforestry Systems, 82(1), 37–50.
[38] Okubo, H., Shima, E., Maekawa, K., Tsutsumi, S., & Sato, K. (1999). Accumulated situation of organic matter at sabo dam area and the processes of influence on water environment in Tohoku region. Journal of the Japan Society of Erosion Control Engineering, 52(3), 17–25.
[39] Piton, G., & Recking, A. (2016). Design of sediment traps with open check dams. II: Woody debris. Journal of Hydraulic Engineering, 142(2), 04015046.
[40] Piton, G., Horiguchi, T., Marchal, L., & Lambert, S. (2020). Open check dams and large wood: Head losses and release conditions. Natural Hazards and Earth System Sciences, 20(12), 3293–3314.
[41] Pringle, C. (2003). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17(13), 2685–2689.
[42] Qin, X., Zhu, H., Ren, Y., Cao, Z., Wang, X., Zhao, Z., Yao, Y., Zhong, Z., Kong, W., Qiu, Q., Jia, H., & Wei, X. (2022). Erosion intensity and check dam size affect the horizontal and vertical distribution of soil particles, carbon and nitrogen: Evidence from China's Loess Plateau. Catena, 217, 106451.
[43] Quiñonero-Rubio, J. M., Nadeu, E., Boix-Fayos, C., & de Vente, J. (2016). Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. Land Degradation & Development, 27(4), 1018–1031.
[44] Ramos-Díez, I., Navarro-Hevia, J., Fernández, R., Díaz-Gutiérrez, V., & Mongil-Manso, J. (2017). Evaluating methods to quantify sediment volumes trapped behind check dams, Saldaña badlands (Spain). International Journal of Sediment Research, 32(1), 1–11.
[45] Senapati, N., Hulugalle, N. R., Smith, P., Wilson, B. R., Yeluripati, J. B., Daniel, H., Ghosh, S., & Lockwood, P. (2014). Modelling soil organic carbon storage with RothC in irrigated Vertisols under cotton cropping systems in the sub-tropics. Soil & Tillage Research, 143, 38–49.
[46] Sinitambirivoutin, M., Milne, E., Schiettecatte, L.-S., Tzamtzis, I., Dionisio, D., Henry, M., Brierley, I., Salvatore, M., & Bernoux, M. (2024). An updated IPCC major soil types map derived from the harmonized world soil database v2.0. Catena, 238, 107879.
[47] Stevenson, F. J. (1957). Distribution of the forms of nitrogen in some soil profiles. Soil Science Society of America Journal, 21(3), 283–287.
[48] Takahashi, T. (2007). Debris flow: Mechanics, prediction and countermeasures (2nd ed.). Taylor & Francis/Balkema.
[49] Takebayashi, H., & Fujita, M. (2020). Numerical simulation of a debris flow on the basis of a two-dimensional continuum body model. Geosciences, 10(2), 45.
[50] Waksman, S. A. (1924). Influence of microorganisms upon the carbon-nitrogen ratio in the soil. Journal of Agricultural Science, 14(4), 555–562.
[51] Warren, C. J., Saurette, D. D., & Gillespie, A. W. (2021). Soil organic carbon content: Decreases partly attributed to dilution by increased depth of cultivation in southern Ontario. Canadian Journal of Soil Science, 101(2), 335–338.
[52] Wisoyo, A. (2012). The analysis of sabo dam performance as a sediment control structure in Putih River, Mt. Merapi. Civil Engineering Forum, XXI(3), 1271–1278.
[53] Zahabi, S. A., Ayoubi, S., Jalalian, A., Mosaddeghi, M. R., & Finke, P. A. (2022). Carbon sequestration capability of check dams in different regions of western Iran. Catena, 216, 106378.
[54] Zeng, Y., Meng, X., Zhang, Y., Dai, W., Fang, N., & Shi, Z. (2022). Estimation of the volume of sediment deposited behind check dams based on UAV remote sensing. Journal of Hydrology, 612, 128143.
[55] Zhang, H., Liu, S., Yuan, W., Dong, W., Xia, J., Cao, Y., & Jia, Y. (2016). Loess Plateau check dams can potentially sequester eroded soil organic carbon. Journal of Geophysical Research: Biogeosciences, 121(6), 1449–1455.
[56] Zhang, J., Shang, Y., Bai, R., Yin, M., Wang, X., & Zheng, F. (2022). Sediment source determination for a series of connected check dams in an agricultural catchment in the Chinese Mollisol region. Journal of Hydrology, 610, 127873.
[57] Zhang, J., Yang, M., Zhang, F., Tang, Y., Wang, X., & Wang, Y. (2020). Revealing soil erosion characteristics using deposited sediment sources in a complex small catchment in the wind-water erosion crisscross region of the Chinese Loess Plateau. Geoderma, 379, 114634.
[58] Zhang, X., Cao, H., Liu, J., Zheng, X., & She, D. (2025). Assessing carbon sequestration potential of check dams in the Helong Region of the Chinese Loess Plateau. Land Degradation & Development, 36(4), 1343–1355.
[59] 何正品 (2008). 臺灣土壤有機碳空間分布與氣候、地形關係之研究 [博士論文,國立屏東科技大學]. 華藝線上圖書館.
[60] 農業部農村發展及水土保持署 (2013). 新北市瑞芳區弓橋里新北 DF174 既有設施複勘報告. 農業部農村發展及水土保持署.
[61] 農業部農村發展及水土保持署 (2019). 水土保持單元叢書. 農業部農村發展及水土保持署.
[62] 連惠邦 & 蔡易達 (2013). 水土保持防砂工程防砂量計量模式之建立與應用 中華水土保持學報, 44(4), 351–362.
[63] 農業部農村發展及水土保持署 (2025). 水土保持圖資查詢平台. 行政院農業部. https://gis.ardswc.gov.tw/map/
[64] 農業部農村發展及水土保持署 (2023). 新北市瑞芳區弓橋里新北 DF174 既有設施複勘報告. 農業部農村發展及水土保持署.
[65] 農業部農業試驗所 (2012). 臺灣土壤資訊網站. https://soilsurvey.tari.gov.tw/SOA/index.aspx
[66] 經濟部中央地質調查所(2023).地質資料整合查詢。 https://geomap.gsmma.gov.tw/gwh/gsb97-1/sys8a/t3/index1.cfm
[67] 經濟部水利署水文技術小組 (2024). 113年全台雨量站降雨強度延時公式推導成果報告. 經濟部水利署.
[68] 聯合國糧農組織(FAO)與政府間土壤技術小組(ITPS) (2021). 全球土壤再固碳-推薦管理措施之技術手冊 (張正堂等譯). 聯合國糧農組織與政府間土壤技術小組.
[69] 顧玉蓉 (2007). 溪流結構物對生態影響之定量評估 [博士論文,國立成功大學]. 國立成功大學.
[70] 黃琨源 (2009). 臺灣地區不同類型土壤之有機碳儲存量估算 [碩士論文,國立屏東科技大學]. 華藝線上圖書館.
[71] 黃揮凱 (2015). 三種防砂壩攔阻漂流木及土砂效率分析 [碩士論文,國立中興大學]. 國立中興大學水土保持學系.
[72] 楊博鈞, 楊心如, 劉滄棽, 張翊庭, & 許健輝 (2024). 利用數位土壤繪圖預測濁水溪流域土壤有機碳儲量. 台灣農業研究, 73(2), 135–151.
[73] 董耿維 & 邱馨標 (2021). 應用 HEC-RAS 模擬高屏溪流量對於萬大大橋之影響. 水保技術, 15(3), 26–33.
[74] 鄭筱嬋 (2021). 不同年份人工植生復育邊坡之土壤碳存量變化與有機質特性 [碩士論文,國立屏東科技大學]. 國立屏東科技大學水土保持系所.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98705-
dc.description.abstract本研究旨在建立一套針對臺灣攔砂壩淤積地區有機碳儲存潛力之評估框架,結合二維水理模式、土壤分類與現地量測分析,以掌握不同壩體類型與地理條件下的碳儲特性。研究選定宜蘭縣員山鄉枕山村大礁溪封閉式攔砂壩(JX01)、宜蘭縣南澳鄉武雲溪封閉式攔砂壩(NA01)與新北市瑞芳區弓橋里開放式梳子壩(RF02)三處代表性攔砂壩為對象,運用 HEC-RAS 二維水理模式模擬淤積情形,獲得壩後淤積體積與面積,並配合實地採樣獲得之總體密度、有機碳濃度、總氮及細顆粒比例,估算各壩體的淤積有機碳儲量。
同時,參考臺灣各類土綱的碳儲資料與各壩實際分布之土壤類型,進行代表性有機碳濃度設定與整體碳儲量外推。為探討前30公分淺層碳濃度對整體碳儲的代表性,本研究建立上限與下限估算範圍,並與實測總量對比。結果顯示,三處壩體之有機碳總儲量推估分別為大礁溪(JX01) 35.085~54.296 Mg、武雲溪(NA01) 16.538~25.594 Mg、弓橋里(RF02) 13.383~20.711 Mg。
此外,本研究亦建立以土綱平均碳濃度與壩後淤積條件為基礎之簡化預測模型,提供可於樣區外初步評估之工具。整體而言,本研究結果指出攔砂壩不僅具水土保持功能,亦潛藏顯著碳儲潛力,其空間異質性則須納入壩體地形與土壤組成等因子考量,為未來國土碳管理策略提供依據。
zh_TW
dc.description.abstractThis study aims to establish a preliminary assessment framework for estimating the soil organic carbon (SOC) sequestration potential in sedimented areas behind check dams in Taiwan. By integrating 2D hydraulic modeling, soil taxonomy, and field-based analyses, the research seeks to understand the carbon storage characteristics under different dam types and geomorphic conditions. Three representative check dams were selected as case sites: a closed-type check dam in Dajiao Creek, Zhenshan Village, Yuanshan Township, Yilan County (JX01); a closed-type check dam in Wuyun Creek, Nanao Township, Yilan County (NA01); and an open-type slit dam in Gongqiao Village, Ruifang District, New Taipei City (RF02). Using the HEC-RAS 2D hydraulic model, the post-dam sedimentation volume and area were simulated. These were combined with measured data, including bulk density, SOC concentration, and fine particle ratio, to estimate the SOC stock within the sedimented zone of each dam.
In addition, representative SOC concentrations were assigned based on Taiwan’s soil order carbon storage database and the actual soil types distributed at each dam site. Extrapolation of total SOC storage was performed by setting upper and lower estimation bounds to evaluate the representativeness of surface (0–30 cm) SOC concentrations. The results indicated that the estimated total SOC storage for each dam was: JX01: 35.085~54.296 Mg, NA01: 16.538~25.594 Mg, and RF02 : 13.383~20.711 Mg.
This study further developed a simplified predictive model based on average SOC values for relevant soil orders and dam-specific sedimentation characteristics, offering a practical tool for preliminary assessment beyond the sampled sites. Overall, the findings highlight that check dams not only serve sediment retention and watershed conservation functions, but also hold substantial carbon sequestration potential. However, spatial heterogeneity must be accounted for by incorporating dam morphology and soil composition into future national-scale carbon management strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:10:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:10:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究流程 4
第二章 文獻回顧 5
2.1 土壤有機碳儲存與碳匯管理背景 5
2.1.1 全球碳循環與土壤碳在自然碳匯中的角色 5
2.1.2 土壤碳穩定機制 7
2.1.3 土壤碳儲存潛力的評估方法 9
2.2 攔砂壩之設計功能與地貌環境效應 11
2.2.1 攔砂壩的類型、功能與地形條件需求 11
2.2.2 攔砂壩的水土保持與土砂輸送調節角色 13
2.2.3 攔砂壩對河道地貌與生態系統的衝擊 15
2.3 攔砂壩之碳滯留潛力與相關研究 15
2.3.1 海外研究案例 16
2.3.2 臺灣研究案例缺口 18
2.4 攔砂壩碳儲研究之方法學探討 18
2.4.1 淤積體積之空間估算方法 18
2.4.2 水文模擬與地形分析技術應用 19
2.4.3 土壤碳分析與模擬整合應用 21
第三章 研究方法與理論 23
3.1 攔砂壩資料彙整 23
3.2 研究區域 26
3.2.1 宜蘭縣員山鄉枕山村:大礁溪-01-A11-92攔砂壩 26
3.2.2 宜蘭縣南澳鄉武雲溪攔砂壩 30
3.2.3 新北市瑞芳區大粗坑溪攔砂壩 35
3.3 地形與水文資料處理 39
3.3.1 數值地形模型DEM處理 39
3.3.2 河道流量設計 40
3.4 HEC-RAS模式 41
3.4.1 質量守恆方程式 41
3.4.2 動量守恆方程式 41
3.4.3 擴散波近似模式 42
3.4.4 數值解法與穩定性控制 42
3.4.5 HEC-RAS模式建置 43
3.5 現地採樣與土壤分析 50
3.5.1 土壤採樣 50
3.5.2 總體密度(Bulk density) 51
3.5.3 總有機碳分析儀 51
3.6 攔砂壩碳儲存量估算預測 54
3.6.1 土綱分析 54
3.6.2 代表性有機碳濃度計算 55
3.6.3 整層有機碳預測方程式 56
第四章 研究結果與分析 57
4.1 研究區域模擬淤積情形 57
4.1.1 宜蘭縣員山鄉枕山村大礁溪JX01攔砂壩模擬淤積結果 57
4.1.2 宜蘭縣南澳鄉武雲溪NA01攔砂壩模擬淤積結果 58
4.1.3 新北市瑞芳區弓橋里大粗坑溪RF02攔砂壩模擬淤積結果 59
4.2 實驗測得有機碳含量、濃度、總氮含量CN比 61
4.3 模擬所得攔砂壩有機碳含量 69
第五章 結論與建議 73
5.1 結論 73
5.2 建議 74
參考文獻 76
-
dc.language.isozh_TW-
dc.subject攔砂壩zh_TW
dc.subject土壤有機碳zh_TW
dc.subject碳儲存量評估zh_TW
dc.subject沉積物採樣zh_TW
dc.subject模式模擬zh_TW
dc.subjectCarbon storage assessmenten
dc.subjectCheck damen
dc.subjectHEC-RAS modelingen
dc.subjectSediment samplingen
dc.subjectSoil organic carbonen
dc.title攔砂壩土壤有機碳儲存量評估框架之研究zh_TW
dc.titleDeveloping an Assessment Framework for Soil Organic Carbon Storage in Check Damsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李鴻源;葉克家zh_TW
dc.contributor.oralexamcommitteeHong-Yuan Lee;Keh-Chia Yehen
dc.subject.keyword攔砂壩,土壤有機碳,碳儲存量評估,沉積物採樣,模式模擬,zh_TW
dc.subject.keywordCheck dam,Soil organic carbon,Carbon storage assessment,Sediment sampling,HEC-RAS modeling,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202504189-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved