Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許富鈞zh_TW
dc.contributor.advisorFu-Chiun Hsuen
dc.contributor.author洪珮薰zh_TW
dc.contributor.authorPei-Hsun Hungen
dc.date.accessioned2025-08-18T16:08:46Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation農業部農糧署. 2023. 農業統計資料查詢. <https://agrstat.moa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>.
蕭政弘. 2017. 甘藍產業特性與品種類型. 臺中區農業專訊. 96:3-5.
蕭政弘、郭俊毅. 2007. 甘藍育種成果及未來育種方向. 臺中區農業改良場特刊88:36-56.
顧芷凌. 2020. 淹水後復氧期間氧化逆境對甘藍淹水耐受性之角色. 國立臺灣大學園藝暨景觀學系研究所學位論文. 臺北.
Ahmar, S., R. A. Gill, K.-H. Jung, A. Faheem, M. U. Qasim, M. Mubeen, and W. Zhou. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int. J. Mol. Sci. 21:2590.
Ambros, S., M. Kotewitsch, P. R. Wittig, B. Bammer, and A. Mustroph. 2022. Transcriptional Response of Two Brassica napus Cultivars to Short-Term Hypoxia in the Root Zone. Front. Plant Sci. 13.
Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.
Armstrong, W., S. Justin, P. Beckett, and S. Lythe. 1991. Root adaptation to soil waterlogging. Aquat. Bot. 39:57-73.
Ayano, M., T. Kani, M. Kojima, H. Sakakibara, T. Kitaoka, T. Kuroha, R. B. Angeles-Shim, H. Kitano, K. Nagai, and M. Ashikari. 2014. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37:2313-2324.
Baena-González, E., F. Rolland, J. M. Thevelein, and J. Sheen. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938-942.
Bailey-Serres, J., T. Fukao, D. J. Gibbs, M. J. Holdsworth, S. C. Lee, F. Licausi, P. Perata, L. A. C. J. Voesenek, and J. T. van Dongen. 2012a. Making sense of low oxygen sensing. Trends Plant Sci. 17:129-138.
Bailey-Serres, J., T. Fukao, P. Ronald, A. Ismail, S. Heuer, and D. Mackill. 2010. Submergence Tolerant Rice: SUB1’s Journey from Landrace to Modern Cultivar. Rice 3:138-147.
Bailey-Serres, J., S. C. Lee, and E. Brinton. 2012b. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160:1698-1709.
Bailey-Serres, J., and L. A. Voesenek. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59:313-339.
Bailey-Serres, J., and L. A. C. J. Voesenek. 2010. Life in the balance: a signaling network controlling survival of flooding. Curr. Opin. Plant Biol. 13:489-494.
Baker, A., I. A. Graham, M. Holdsworth, S. M. Smith, and F. L. Theodoulou. 2006. Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci. 11:124-132.
Banti, V., F. Mafessoni, E. Loreti, A. Alpi, and P. Perata. 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152:1471-1483.
Bashar, K. K., M. Z. Tareq, M. R. Amin, U. Honi, M. Tahjib-Ul-Arif, M. A. Sadat, and Q. M. M. Hossen. 2019. Phytohormone-mediated stomatal response, escape and quiescence strategies in plants under flooding stress. Agronomy 9:43.
Basu, S., S. Kumari, P. Kumar, G. Kumar, and R. Rajwanshi. 2021. Redox imbalance impedes photosynthetic activity in rice by disrupting cellular membrane integrity and induces programmed cell death under submergence. Physiol. Plant. 172:1764-1778.
Batistic, O., and J. Kudla. 2004. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915-924.
Benschop, J. J., J. Bou, A. J. M. Peeters, N. Wagemaker, K. Gühl, D. Ward, P. Hedden, T. Moritz, and L. A. C. J. Voesenek. 2006. Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin. Plant Physiol. 141:1644-1652.
Benschop, J. J., M. B. Jackson, K. Gühl, R. A. M. Vreeburg, S. J. Croker, A. J. M. Peeters, and L. A. C. J. Voesenek. 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 44:756-768.
Bhandari, H., A. N. Bhanu, K. Srivastava, M. Singh, and H. A. Shreya. 2017. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 7:279-286.
Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
Borevitz, J. O., and M. Nordborg. 2003. The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol. 132:718-725.
Bortlik, J., J. Lühle, S. Alseekh, C. Weiste, A. R. Fernie, W. Dröge-Laser, and F. Börnke. 2024. DOMAIN OF UNKNOWN FUNCTION581-9 negatively regulates SnRK1 kinase activity. Plant Physiol. 194:1853-1869.
Bouzroud, S., S. Gouiaa, N. Hu, A. Bernadac, I. Mila, N. Bendaou, A. Smouni, M. Bouzayen, and M. Zouine. 2018. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLOS One 13:e0193517.
Bradford, K. J., and S. F. Yang. 1981. Physiological responses of plants to waterlogging. HortScience 16:25-30.
Branco-Price, C., R. Kawaguchi, R. B. Ferreira, and J. Bailey-Serres. 2005. Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann. Bot. 96:647-660.
Brown, N. J., B. G. Palmer, S. Stanley, H. Hajaji, S. H. Janacek, H. M. Astley, K. Parsley, K. Kajala, W. P. Quick, S. Trenkamp, A. R. Fernie, V. G. Maurino, and J. M. Hibberd. 2010. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J. 61:122-133.
Bush, W. S., and J. H. Moore. 2012. Chapter 11: Genome-wide association studies. PLoS Comp. Biol. 8:e1002822.
Calderwood, A., and S. Kopriva. 2014. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric oxide 41:72-78.
Camarena, L., V. Bruno, G. Euskirchen, S. Poggio, and M. Snyder. 2010. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Path. 6:e1000834.
Campbell, N. R., S. A. Harmon, and S. R. Narum. 2015. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Resour. 15:855-867.
Chen, J., S. X. Chang, and A. O. Anyia. 2011. Gene discovery in cereals through quantitative trait loci and expression analysis in water‐use efficiency measured by carbon isotope discrimination. Plant, Cell Environ. 34:2009-2023.
Chen, J., M. Quan, and D. Zhang. 2015a. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125-143.
Chen, W., Y. Gao, W. Xie, L. Gong, K. Lu, W. Wang, Y. Li, X. Liu, H. Zhang, H. Dong, W. Zhang, L. Zhang, S. Yu, G. Wang, X. Lian, and J. Luo. 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 46:714-721.
Chen, X., O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg, A. J. Cox, S. Kruglyak, and C. T. Saunders. 2015b. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220-1222.
Cheng, X.-X., M. Yu, N. Zhang, Z.-Q. Zhou, Q.-T. Xu, F.-Z. Mei, and L.-H. Qu. 2016. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 253:311-327.
Cho, H. Y., E. Loreti, M. C. Shih, and P. Perata. 2021. Energy and sugar signaling during hypoxia. New Phytol. 229:57-63.
Cho, S. K., M. Y. Ryu, J. H. Kim, J. S. Hong, T. R. Oh, W. T. Kim, and S. W. Yang. 2017. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants. BMB Rep. 50:393-400.
Cho, Y.-H., J.-W. Hong, E.-C. Kim, and S.-D. Yoo. 2012. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol. 158:1955-1964.
Choudhury, F. K., R. M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90:856-867.
Chung, H.-J., and R. J. Ferl. 1999. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol. 121:429-436.
Cingolani, P., P. Adrian, W. L. Lily, C. Melissa, N. Tung, W. Luan, L. S. J., L. Xiangyi, and D. M. and Ruden. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:80-92.
Claeyssen, E., and J. Rivoal. 2007. Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709-731.
Colebrook, E. H., S. G. Thomas, A. L. Phillips, and P. Hedden. 2014. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 217:67-75.
Coll-Garcia, D., J. Mazuch, T. Altmann, and C. Müssig. 2004. EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett. 563:82-86.
Collins, N. C., F. Tardieu, and R. Tuberosa. 2008. Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol. 147:469-486.
Colmer, T. D., and L. A. C. J. Voesenek. 2009. Flooding tolerance: suites of plant traits in variable environments. Funct. Plant Biol. 36:665-681.
Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407:321-326.
Cox, M. C. H., J. J. Benschop, R. A. M. Vreeburg, C. A. M. Wagemaker, T. Moritz, A. J. M. Peeters, and L. A. C. J. Voesenek. 2004. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol. 136:2948-2960.
Da-Silva, C. J., and L. do Amarante. 2020. Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environ. Exp. Bot. 180:104242.
Dąbrowska-Bronk, J., D. N. Komar, A. Rusaczonek, A. Kozłowska-Makulska, M. Szechyńska-Hebda, and S. Karpiński. 2016. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner. J. Plant Physiol. 203:44-54.
Damanik, R. I., M. Maziah, M. R. Ismail, S. Ahmad, and A. M. Zain. 2010. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol. Plant. 32:739-747.
Danisman, S. 2016. TCP Transcription factors at the interface between environmental challenges and the plant’s growth responses. Front. Plant Sci. 7.
De Gara, L. 2004. Class III peroxidases and ascorbate metabolism in plants. Phytochem. Rev. 3:195-205.
De Santis, A., P. Landi, and G. Genchi. 1999. Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol. 119:743-754.
DeVicente, M., and S. Tanksley. 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585-596.
Dhungana, S. K., H.-S. Kim, B.-K. Kang, J.-H. Seo, H.-T. Kim, S.-O. Shin, J.-H. Oh, and I.-Y. Baek. 2021. Identification of QTL for tolerance to flooding stress at seedling stage of soybean (Glycine max L. Merr.). Agronomy 11:908.
Drerup, M. M., K. Schlücking, K. Hashimoto, P. Manishankar, L. Steinhorst, K. Kuchitsu, and J. Kudla. 2013. The Calcineurin B-Like Calcium Sensors CBL1 and CBL9 Together with Their Interacting Protein Kinase CIPK26 Regulate the Arabidopsis NADPH Oxidase RBOHF. Mol. Plant 6:559-569.
Dwyer, P. J., P. Bannister, and P. E. Jameson. 1995. Effects of three plant growth regulators on growth, morphology, water relations, and frost resistance in lemonwood (Pittosporum eugenioides A.Cunn). N. Z. J. Bot. 33:415-424.
Edwards, J. M., T. H. Roberts, and B. J. Atwell. 2012. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. J. Exp. Bot. 63:4389-4402.
Elhafez, D., M. W. Murcha, R. Clifton, K. L. Soole, D. A. Day, and J. Whelan. 2006. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol. 47:43-54.
Else, M. A., K. C. Hall, G. M. Arnold, W. J. Davies, and M. B. Jackson. 1995. Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants (accounting for effects of xylem sap flow rate on concentration and delivery). Plant Physiol. 107:377-384.
Else, M. A., F. Janowiak, C. J. Atkinson, and M. B. Jackson. 2008. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 103:313-323.
English, P. J., G. W. Lycett, J. A. Roberts, and M. B. Jackson. 1995. Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiol. 109:1435-1440.
Ewels, P. A., A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm, M. U. Garcia, P. Di Tommaso, and S. Nahnsen. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38:276-278.
Fan, Y., S. Shabala, Y. Ma, R. Xu, and M. Zhou. 2015. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43.
Fang, Z., and X. Cui. 2011. Design and validation issues in RNA-seq experiments. Briefings Bioinf. 12:280-287.
Fukao, T., and J. Bailey-Serres. 2004. Plant responses to hypoxia-is survival a balancing act? Trends Plant Sci. 9:449-456.
Fukao, T., and J. Bailey-Serres. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. U.S.A. 105:16814-16819.
Fukao, T., K. Xu, P. C. Ronald, and J. Bailey-Serres. 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021-2034.
Fukao, T., E. Yeung, and J. Bailey-Serres. 2010. The Submergence Tolerance Regulator SUB1A Mediates Crosstalk between Submergence and Drought Tolerance in Rice Plant Cell 23:412-427.
Fukazawa, J., M. Mori, S. Watanabe, C. Miyamoto, T. Ito, and Y. Takahashi. 2017. DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2. Plant Physiol. 175:1395-1406.
Furbank, R. T., and M. Tester. 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16:635-644.
Gabruk, M., and B. Mysliwa-Kurdziel. 2015. Light-dependent protochlorophyllide oxidoreductase: Phylogeny, regulation, and catalytic properties. Biochemistry 54:5255-5262.
Garbuz, D., O. Zatsepina, and M. Evgen’ev. 2019. The major human stress protein Hsp70 as a factor of protein homeostasis and a cytokine-like regulator. Mol. Biol. 53:176-191.
Garcia, L., E. Welchen, U. Gey, A. L. Arce, I. Steinebrunner, and D. H. Gonzalez. 2016. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. Plant, Cell Environ. 39:628-644.
Garcia, M., S. Juhos, M. Larsson, P. I. Olason, M. Martin, J. Eisfeldt, S. DiLorenzo, J. Sandgren, T. Díaz De Ståhl, P. Ewels, V. Wirta, M. Nistér, M. Käller, and B. Nystedt. 2020. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Research 9:63.
Garcia, M. E., T. Lynch, J. Peeters, C. Snowden, and R. Finkelstein. 2008. A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol. Biol. 67:643-658.
Garrison, E., and G. Marth. 2012. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907.
Gaymard, F., G. Pilot, B. Lacombe, D. Bouchez, D. Bruneau, J. Boucherez, N. Michaux-Ferrière, J. B. Thibaud, and H. Sentenac. 1998. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647-655.
Geisler, D. A., C. Broselid, L. Hederstedt, and A. G. Rasmusson. 2007. Ca2+-binding and Ca2+-independent -independent Respiratory NADH and NADPH Dehydrogenases of Arabidopsis thaliana. J. Biol. Chem. 282:28455-28464.
Geldhof, B., O. Novák, and B. Van de Poel. 2023. Leaf ontogeny modulates epinasty through shifts in hormone dynamics during waterlogging in tomato. J. Exp. Bot. 75:1081-1097.
Geldhof, B., J. Pattyn, D. Eyland, S. Carpentier, and B. Van de Poel. 2021. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. Plant Physiol. 187:1131-1148.
Geng, S., Z. Lin, S. Xie, J. Xiao, H. Wang, X. Zhao, Y. Zhou, and L. Duan. 2023. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings. J. Plant Physiol. 287:154042.
Gibbs, D. J., J. Bacardit, A. Bachmair, and M. J. Holdsworth. 2014. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24:603-611.
Gibbs, D. J., J. V. Conde, S. Berckhan, G. Prasad, G. M. Mendiondo, and M. J. Holdsworth. 2015. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169:23-31.
Gibbs, D. J., and M. J. Holdsworth. 2020. Every breath you take: new insights into plant and animal oxygen sensing. Cell 180:22-24.
Gibbs, D. J., S. C. Lee, N. Md Isa, S. Gramuglia, T. Fukao, G. W. Bassel, C. S. Correia, F. Corbineau, F. L. Theodoulou, J. Bailey-Serres, and M. J. Holdsworth. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415-418.
Gibbs, J., and H. Greenway. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30:1-47.
Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
Giuntoli, B., and P. Perata. 2017. Group VII ethylene response factors in Arabidopsis: regulation and physiological roles. Plant Physiol. 176:1143-1155.
Glenn, T. C. 2011. Field guide to next‐generation DNA sequencers. Mol. Ecol. Resour. 11:759-769.
Goodwin, S., J. D. McPherson, and W. R. McCombie. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:333-351.
Graciet, E., F. Mesiti, and F. Wellmer. 2010. Structure and evolutionary conservation of the plant N-end rule pathway. Plant J. 61:741-751.
Grunenwald, H. 2003. Optimization of Polymerase Chain Reactions. p. 89-99. In J. M. S. Bartlett and D. Stirling (eds.). PCR Protocols. Humana Press, Totowa, NJ.
Gui, J., L. Luo, Y. Zhong, J. Sun, T. Umezawa, and L. Li. 2019. Phosphorylation of LTF1, an MYB transcription factor in Populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Mol. Plant 12:1325-1337.
Gunawardena, A., D. Pearce, M. Jackson, C. Hawes, and D. Evans. 2001. Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant, Cell Environ. 24:1369-1375.
Guo, Z., H. Wang, J. Tao, Y. Ren, C. Xu, K. Wu, C. Zou, J. Zhang, and Y. Xu. 2019. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol. Breed. 39:1-12.
Härndahl, U., R. B. Hall, K. W. Osteryoung, E. Vierling, J. F. Bornman, and C. Sundby. 1999. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129-138.
Hartman, S., R. Sasidharan, and L. A. C. J. Voesenek. 2021. The role of ethylene in metabolic acclimations to low oxygen. New Phytol. 229:64-70.
Hasanuzzaman, M., M. B. Bhuyan, T. I. Anee, K. Parvin, K. Nahar, J. A. Mahmud, and M. Fujita. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384.
Hattori, Y., K. Nagai, S. Furukawa, X.-J. Song, R. Kawano, H. Sakakibara, J. Wu, T. Matsumoto, A. Yoshimura, H. Kitano, M. Matsuoka, H. Mori, and M. Ashikari. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-1030.
Hinz, M., I. W. Wilson, J. Yang, K. Buerstenbinder, D. Llewellyn, E. S. Dennis, M. Sauter, and R. Dolferus. 2010. Arabidopsis RAP2.2: An ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153:757-772.
Hoffmann-Benning, S., and H. Kende. 1992. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 99:1156-1161.
Hogrefe, H. H., and M. C. Borns. 2011. Long-Range PCR with a DNA Polymerase Fusion. p. 17-23. In Daniel J. Park (eds.). PCR Protocols. Humana Press, Totowa, NJ.
Hromadová, D., A. Soukup, and E. Tylová. 2021. Arabinogalactan proteins in plant roots-an update on possible functions. Front. Plant Sci. 12.
Hsu, F.C. and Wu, Y.L. 2019. Performance of three cabbage (Brassica oleracea var. capitate) genotypes in flooding tolerance. Acta Hortic. 1257:139-142.
Huang, J., X. Zhao, and J. Chory. 2019. The Arabidopsis transcriptome responds specifically and dynamically to high light stress. Cell Reports 29:4186-4199.e4183.
Huang, P., J. Zhao, J. Hong, B. Zhu, S. Xia, E. Zhu, P. Han, and K. Zhang. 2022. Cytokinins regulate rice lamina joint development and leaf angle. Plant Physiol. 191:56-69.
Huang, Y.-C., H.-C. Wu, Y.-D. Wang, C.-H. Liu, C.-C. Lin, D.-L. Luo, and T.-L. Jinn. 2017. PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. Plant Physiol. 174:748-763.
Hui, S., M. Hao, H. Liu, J. Xiao, X. Li, M. Yuan, and S. Wang. 2019. The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem. Biophys. Res. Commun. 508:1062-1066.
Ikram, M., J. Chen, Y. Xia, R. Li, K. H. M. Siddique, and P. Guo. 2022. Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis) using RNA sequencing. Front. Plant Sci. 13.
Ishimaru, K., M. Yano, N. Aoki, K. Ono, T. Hirose, S. Lin, L. Monna, T. Sasaki, and R. Ohsugi. 2001. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet. 102:793-800.
Islam, M. M., R. Gupta, and M. S. Islam. 2019. Assessment of rice genotypes for salt stress at seedling and reproductive stage by using phenotypic and molecular markers. Asian-Australas. J. Biosci. Biotechnol. 4:176-183.
Iyer, S. V., S. Goodwin, and W. R. McCombie. 2024. Leveraging the power of long reads for targeted sequencing. Genome Res. 34:1701-1718.
Jackson, M. 1997. Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci. 2:22-28.
Jackson, M., and W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1:274-287.
Jackson, M. B., and D. J. Campbell. 1976. Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol. 76:21-29.
Jamsheer K, M., M. Sharma, D. Singh, C. T. Mannully, S. Jindal, B. N. Shukla, and A. Laxmi. 2018. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J. 94:232-245.
Jänsch, L., V. Kruft, U. K. Schmitz, and H. P. Braun. 1996. New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 9:357-368.
Jia, H., Y. Guo, W. Zhao, and K. Wang. 2014. Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Sci. Rep. 4:5737.
Jia, W., M. Ma, J. Chen, and S. Wu. 2021. Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int. J. Mol. Sci. 22:1088.
Jin, Q., Y. Wang, X. Li, S. Wu, Y. Wang, J. Luo, N. Mattson, and Y. Xu. 2017. Interactions between ethylene, gibberellin and abscisic acid in regulating submergence induced petiole elongation in Nelumbo nucifera. Aquat. Bot. 137:9-15.
Jin, R., A. Zhang, J. Sun, X. Chen, M. Liu, P. Zhao, W. Jiang, and Z. Tang. 2021. Identification of Shaker K+ channel family members in sweetpotato and functional exploration of IbAKT1. Gene 768:145311.
Jordan, K. W., S. Wang, Y. Lun, L.-J. Gardiner, R. MacLachlan, P. Hucl, K. Wiebe, D. Wong, K. L. Forrest, and I. Consortium. 2015. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 16:1-18.
Ju, C., G. M. Yoon, J. M. Shemansky, D. Y. Lin, Z. I. Ying, J. Chang, W. M. Garrett, M. Kessenbrock, G. Groth, and M. L. Tucker. 2012. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109:19486-19491.
K, M. J., and A. Laxmi. 2014. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One 9:e99074.
Kalamaki, M. S., D. Alexandrou, D. Lazari, G. Merkouropoulos, V. Fotopoulos, I. Pateraki, A. Aggelis, A. Carrillo-López, M. J. Rubio-Cabetas, and A. K. Kanellis. 2009. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J. Exp. Bot. 60:1859-1871.
Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323.
Kende, H., E. Van Der Knaap, and H.-T. Cho. 1998. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 118:1105-1110.
Kim, J. H., and H. Kende. 2004. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 101:13374-13379.
Kim, S. J., and W. T. Kim. 2013. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett. 587:2584-2590.
Kimura, S., T. Kawarazaki, H. Nibori, M. Michikawa, A. Imai, H. Kaya, and K. Kuchitsu. 2013. The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J. Biol. Chem. 153:191-195.
Klok, E. J., I. W. Wilson, D. Wilson, S. C. Chapman, R. M. Ewing, S. C. Somerville, W. J. Peacock, R. Dolferus, and E. S. Dennis. 2002. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481-2494.
Knight, H., and M. R. Knight. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6:262-267.
Korte, A., and A. Farlow. 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant methods 9:1-9.
Kosmacz, M., S. Parlanti, M. Schwarzländer, F. Kragler, F. Licausi, and J. T. Van Dongen. 2015. The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration. Plant Cell Environ. 38:1094-1103.
Kumutha, D., R. Sairam, K. Ezhilmathi, V. Chinnusamy, and R. Meena. 2008. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci. 175:706-716.
Kuroha, T., K. Nagai, R. Gamuyao, D. R. Wang, T. Furuta, M. Nakamori, T. Kitaoka, K. Adachi, A. Minami, and Y. Mori. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181-186.
Le Gall, H., F. Philippe, J.-M. Domon, F. Gillet, J. Pelloux, and C. Rayon. 2015. Cell wall metabolism in response to abiotic stress. Plants 4:112-166.
Lee, Y., J.-W. Jung, S.-K. Kim, Y.-S. Hwang, J.-S. Lee, and S.-H. Kim. 2008. Ethylene-induced opposite redistributions of calcium and auxin are essential components in the development of tomato petiolar epinastic curvature. Plant Physiol. Biochem. 46:685-693.
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997.
Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.
Li, J., X. Dai, and Y. Zhao. 2006. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol. 140:899-908.
Li, Z., S. Mei, Z. Mei, X. Liu, T. Fu, G. Zhou, and J. Tu. 2014. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica 197:341-353.
Licausi, F., M. Kosmacz, D. A. Weits, B. Giuntoli, F. M. Giorgi, L. A. C. J. Voesenek, P. Perata, and J. T. van Dongen. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419-422.
Licausi, F., M. Ohme-Takagi, and P. Perata. 2013a. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199:639-649.
Licausi, F., C. Pucciariello, and P. Perata. 2013b. New role for an old rule: N-end rule-mediated degradation of Ethylene Responsive Factor proteins governs low oxygen response in plants. J. Integr. Plant Biol. 55:31-39.
Licausi, F., J. T. Van Dongen, B. Giuntoli, G. Novi, A. Santaniello, P. Geigenberger, and P. Perata. 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62:302-315.
Liu, K., L. Li, and S. Luan. 2006. Intracellular K+ sensing of SKOR, a Shaker-type K+ channel from Arabidopsis. Plant J. 46:260-268.
Liu, Z., X. Dong, X. Cao, C. Xu, J. Wei, G. Zhen, J. Wang, H. Li, X. Fang, and Y. Wang. 2022. QTL mapping for cold tolerance and higher overwintering survival rate in winter rapeseed (Brassica napus). J. Plant Physiol. 275:153735.
Lorbiecke, R., and M. Sauter. 1999. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119:21-30.
Loreti, E., M. C. Valeri, G. Novi, and P. Perata. 2018. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol. 176:1286-1298.
Loreti, E., H. van Veen, and P. Perata. 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33:64-71.
Luan, S. 2009. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14:37-42.
Mamanova, L., A. J. Coffey, C. E. Scott, I. Kozarewa, E. H. Turner, A. Kumar, E. Howard, J. Shendure, and D. J. Turner. 2010. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7:111-118.
Manghwar, H., A. Hussain, I. Alam, M. A. Khoso, Q. Ali, and F. Liu. 2024. Waterlogging stress in plants: Unraveling the mechanisms and impacts on growth, development, and productivity. Environ. Exp. Bot. 224:105824.
Manimekalai, R., A. Selvi, J. Narayanan, R. Vannish, R. Shalini, S. Gayathri, and V. P. Rabisha. 2023. Comparative physiological and transcriptome analysis in cultivated and wild sugarcane species in response to hydrogen peroxide-induced oxidative stress. BMC Genomics 24:155.
Manolio, T. A. 2010. Genomewide association studies and assessment of the risk of disease. New Engl. J. Med. 363:166-176.
Mansilla, N., S. Racca, D. E. Gras, D. H. Gonzalez, and E. Welchen. 2018. The complexity of mitochondrial complex IV: An update of cytochrome c oxidase biogenesis in plants. Int. J. Mol. Sci. 19.
McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303.
McLaren, W., L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, and F. Cunningham. 2016. The Ensembl Variant Effect Predictor. Genome Biol. 17:122.
Melo-Oliveira, R., I. C. Oliveira, and G. M. Coruzzi. 1996. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. U.S.A. 93:4718-4723.
Mertes, F., A. ElSharawy, S. Sauer, J. M. van Helvoort, P. Van Der Zaag, A. Franke, M. Nilsson, H. Lehrach, and A. J. Brookes. 2011. Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings Funct. Genomics 10:374-386.
Mhimdi, M., and J. M. Pérez-Pérez. 2020. Understanding of adventitious root formation: What can we learn from comparative genetics? Front. Plant Sci. 11.
Miflin, B. J., and D. Z. Habash. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53:979-987.
Mignolli, F., J. S. Todaro, and M. L. Vidoz. 2020. Internal aeration and respiration of submerged tomato hypocotyls are enhanced by ethylene-mediated aerenchyma formation and hypertrophy. Physiol. Plant. 169:49-63.
Millar, A. H., J. Whelan, K. L. Soole, and D. A. Day. 2011. Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62:79-104.
Mittal, L., S. Tayyeba, and A. K. Sinha. 2022. Finding a breather for Oryza sativa: Understanding hormone signalling pathways involved in rice plants to submergence stress. Plant, Cell Environ. 45:279-295.
Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498.
Møller, I. M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Biol. 52:561-591.
Mugford, S. G., N. Yoshimoto, M. Reichelt, M. Wirtz, L. Hill, S. T. Mugford, Y. Nakazato, M. Noji, H. Takahashi, R. Kramell, T. Gigolashvili, U.-I. Flügge, C. Wasternack, J. Gershenzon, R. d. Hell, K. Saito, and S. Kopriva. 2009. Disruption of Adenosine-5’-Phosphosulfate Kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21:910-927.
Müller, M., and S. Munné-Bosch. 2015. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol. 169:32-41.
Mustroph, A., S. C. Lee, T. Oosumi, M. E. Zanetti, H. Yang, K. Ma, A. Yaghoubi-Masihi, T. Fukao, and J. Bailey-Serres. 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol. 152:1484-1500.
Nagai, K., and M. Ashikari. 2023. Molecular mechanism of internode elongation in rice. Breed Sci. 73:108-116.
Nagai, K., Y. Hattori, and M. Ashikari. 2010. Stunt or elongate? Two opposite strategies by which rice adapts to floods. J. Plant Res. 123:303-309.
Nagai, K., Y. Mori, S. Ishikawa, T. Furuta, R. Gamuyao, Y. Niimi, T. Hobo, M. Fukuda, M. Kojima, Y. Takebayashi, A. Fukushima, Y. Himuro, M. Kobayashi, W. Ackley, H. Hisano, K. Sato, A. Yoshida, J. Wu, H. Sakakibara, Y. Sato, H. Tsuji, T. Akagi, and M. Ashikari. 2020. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584:109-114.
Nakano, T., K. Suzuki, T. Fujimura, and H. Shinshi. 2006. Genome-Wide Analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol. 140:411-432.
Nakazawa, M., N. Yabe, T. Ichikawa, Y. Y. Yamamoto, T. Yoshizumi, K. Hasunuma, and M. Matsui. 2001. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 25:213-221.
Narsai, R., and J. Whelan. 2013. How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis. Front. Plant Sci. 4:349.
Nguyen, T.-N., P. A. Tuan, S. Mukherjee, S. Son, and B. T. Ayele. 2018. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J. Exp. Bot. 69:4065-4082.
Nietzsche, M., I. Schießl, and F. Börnke. 2014. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front. Plant Sci. 5.
Nishiuchi, S., T. Yamauchi, H. Takahashi, L. Kotula, and M. Nakazono. 2012. Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2.
Ohtsu, K., M. Nakazono, N. Tsutsumi, and A. Hirai. 2001. Characterization and expression of the genes for cytochrome c oxidase subunit VIb (COX6b) from rice and Arabidopsis thaliana. Gene 264:233-239.
Oladosu, Y., M. Y. Rafii, F. Arolu, S. C. Chukwu, I. Muhammad, I. Kareem, M. A. Salisu, and I. W. Arolu. 2020. Submergence tolerance in rice: review of mechanism, breeding and, future prospects. Sustainability 12:1632.
Oladosu, Y., M. Y. Rafii, C. Samuel, A. Fatai, U. Magaji, I. Kareem, Z. S. Kamarudin, I. i. Muhammad, and K. Kolapo. 2019. Drought resistance in rice from conventional to molecular breeding: a review. Int. J. Mol. Sci. 20:3519.
Olsen, A. N., H. A. Ernst, L. L. Leggio, and K. Skriver. 2005. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci. 169:785-797.
Olszewski, N., T.-p. Sun, and F. Gubler. 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61-S80.
Overmyer, K., M. Brosché, and J. Kangasjärvi. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8:335-342.
Paciolla, C., A. Paradiso, and M. C. de Pinto. 2016. Cellular redox homeostasis as central modulator in plant stress response. p. 1-23. In: D. Gupta, J. Palma, and F. Corpas (eds.) Redox state as a central regulator of plant-cell stress responses. Springer, Cham.
Paliwal, R., G. Singh, R. R. Mir, and B. Gueye. 2021. Genomic-assisted breeding for abiotic stress tolerance in horticultural crops. p. 91-118. In A. Chandra Rai, A. Rai, K. Kumar Rai, V. P. Rai and A. Kumar (eds.). Stress Tolerance in Horticultural Crops. Elsevier, Amsterdam.
Pan, R., S. Buitrago, X. Feng, A. Hu, M. Zhou, and W. Zhang. 2022. Ethylene regulates aerenchyma formation in cotton under hypoxia stress by inducing the accumulation of reactive oxygen species. Environ. Exp. Bot. 197:104826.
Pandey, V. P., M. Awasthi, S. Singh, S. Tiwari, and U. N. Dwivedi. 2017. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 6:308.
Papdi, C., I. Pérez-Salamó, M. P. Joseph, B. Giuntoli, L. Bögre, C. Koncz, and L. Szabados. 2015. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82:772-784.
Parelle, J., M. Zapater, C. Scotti‐Saintagne, A. Kremer, Y. Jolivet, E. Dreyer, and O. Brendel. 2007. Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant, Cell Environ. 30:422-434.
Pearl, L. H., and C. Prodromou. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75:271-294.
Pedersen, O. 1993. Long-distance water transport in aquatic plants. Plant Physiol. 103:1369-1375.
Pegg, T., R. R. Edelmann, and D. K. Gladish. 2020. Immunoprofiling of cell wall carbohydrate modifications during flooding-induced aerenchyma formation in Fabaceae Roots. Front. Plant Sci. 10.
Pelloux, J., C. Rustérucci, and E. J. Mellerowicz. 2007. New insights into pectin methylesterase structure and function. Trends Plant Sci. 12:267-277.
Perata, P., and A. Alpi. 1993. Plant responses to anaerobiosis. Plant Sci. 93:1-17.
Perata, P. and L. A. C. J. Voesenek. 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 12:43-46.
Phillips, A. L., D. A. Ward, S. Uknes, N. E. Appleford, T. Lange, A. K. Huttly, P. Gaskin, J. E. Graebe, and P. Hedden. 1995. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108:1049-1057.
Pierik, R., M. L. C. Cuppens, L. A. C. J. Voesenek, and E. J. W. Visser. 2004. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in Tobacco. Plant Physiol. 136:2928-2936.
Pimenta, M. R., P. A. Silva, G. C. Mendes, J. R. Alves, H. D. N. Caetano, J. P. B. Machado, O. J. B. Brustolini, P. A. Carpinetti, B. P. Melo, and J. C. F. Silva. 2016. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant Cell Physiol. 57:1098-1114.
Polko, J. K., L. A. C. J. Voesenek, A. J. M. Peeters, and R. Pierik. 2011. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment. AoB Plants 2011.
Pospíšil, P. 2009. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta, Bioenerg. 1787:1151-1160.
Privalle, L. S. 2002. Phosphomannose isomerase, a novel plant selection system: potential allergenicity assessment. Ann. N. Y. Acad. Sci. 964:129-138.
Pucciariello, C., S. Parlanti, V. Banti, G. Novi, and P. Perata. 2012. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiol. 159:184-196.
Qi, X., Q. Li, X. Ma, C. Qian, H. Wang, N. Ren, C. Shen, S. Huang, X. Xu, Q. Xu, and X. Chen. 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant, Cell Environ. 42:1458-1470.
Raj, S. R. G., and K. Nadarajah. 2022. QTL and candidate genes: Techniques and advancement in abiotic stress resistance breeding of major cereals. Int. J. Mol. Sci. 24.
Rasmusson, A. G., D. A. Geisler, and I. M. Møller. 2008. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47-60.
Ravilious, G. E., A. Nguyen, J. A. Francois, and J. M. Jez. 2012. Structural basis and evolution of redox regulation in plant adenosine-5’-phosphosulfate kinase. Proc. Natl. Acad. Sci. U.S.A. 109:309-314.
Renziehausen, T., S. Frings, and R. Schmidt-Schippers. 2024. ‘Against all floods’: plant adaptation to flooding stress and combined abiotic stresses. Plant J. 117:1836-1855.
Rikhvanov, E. G., K. Z. Gamburg, N. N. Varakina, T. M. Rusaleva, I. V. Fedoseeva, E. L. Tauson, I. V. Stupnikova, A. V. Stepanov, G. B. Borovskii, and V. K. Voinikov. 2007. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture. Plant J. 52:763-778.
Sahu, P. K., R. Sao, S. Mondal, G. Vishwakarma, S. K. Gupta, V. Kumar, S. Singh, D. Sharma, and B. K. Das. 2020. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review. Plants 9:1355.
Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57:431-449.
Sasidharan, R., J. Bailey-Serres, M. Ashikari, B. J. Atwell, T. D. Colmer, K. Fagerstedt, T. Fukao, P. Geigenberger, K. H. Hebelstrup, and R. D. Hill. 2017. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 214:1403-1407.
Sasidharan, R., S. Hartman, Z. Liu, S. Martopawiro, N. Sajeev, H. van Veen, E. Yeung, and L. A. Voesenek. 2018. Signal dynamics and interactions during flooding stress. Plant Physiol. 176:1106-1117.
Sasidharan, R., V. L. A. C. J., and R. and Pierik. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30:548-562.
Sasidharan, R., and L. A. C. J. Voesenek. 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169:3-12.
Satam, H., K. Joshi, U. Mangrolia, S. Waghoo, G. Zaidi, S. Rawool, R. P. Thakare, S. Banday, A. K. Mishra, G. Das, and S. K. Malonia. 2023. Next-generation sequencing technology: Current trends and advancements. Biology 12:997.
Sauter, M. 2013. Root responses to flooding. Curr. Opin. Plant Biol. 16:282-286.
Schmitz, A. J., J. J. Folsom, Y. Jikamaru, P. Ronald, and H. Walia. 2013. SUB1A -mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol. 198:1060-1070.
Schröder, F., L. Janina, and C. and Müssig. 2012. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis. Plant Signaling Behav. 7:22-27.
Schröder, F., J. Lisso, and C. Müssig. 2011. EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. Plant Physiol. 156:1620-1630.
Schwartz, S. H., K. M. Leon-Kloosterziel, M. Koornneef, and J. Zeevaart. 1997. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114:161-166.
Serrano, M., S. Parra, L. D. Alcaraz, and P. Guzmán. 2006. The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J. Mol. Evol. 62:434-445.
Sharmin, R. A., B. Karikari, F. Chang, G. M. Al Amin, M. R. Bhuiyan, A. Hina, W. Lv, Z. Chunting, N. Begum, and T. Zhao. 2021. Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean. BMC Plant Biol. 21:497.
Smirnoff, N. 1996. Botanical briefing: the function and metabolism of ascorbic acid in plants. Ann. Bot. 78:661-669.
Staswick, P. E., B. Serban, M. Rowe, I. Tiryaki, M. T. Maldonado, M. C. Maldonado, and W. Suza. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616-627.
Steffens, B., T. Geske, and M. Sauter. 2011. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 190:369-378.
Steffens, B., and A. Rasmussen. 2016. The physiology of adventitious roots. Plant Physiol. 170:603-617.
Steffens, B., and M. Sauter. 2009. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184-196.
Steffens, B., A. Steffen-Heins, and M. Sauter. 2013. Reactive oxygen species mediate growth and death in submerged plants. Front. Plant Sci. 4.
Stepanova, A. N., and J. M. Alonso. 2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12:548-555.
Stone, S. L., H. Hauksdóttir, A. Troy, J. Herschleb, E. Kraft, and J. Callis. 2005. Functional analysis of the rING-Type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137:13-30.
Strickler, S. R., A. Bombarely, and L. A. Mueller. 2012. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am. J. Bot. 99:257-266.
Su, Q., G. Frick, G. Armstrong, and K. Apel. 2001. POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol. Biol. 47:805-813.
Suh, J. Y., and W. T. Kim. 2015. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochem. Biophys. Res. Commun. 463:793-799.
Sun, L., L. Ma, S. He, and F. Hao. 2018. AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signaling Behav. 13:e1513300.
Suzuki, N., S. Koussevitzky, R. Mittler, and G. Miller. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell Environ. 35:259-270.
Takasaki, H., K. Maruyama, F. Takahashi, M. Fujita, T. Yoshida, K. Nakashima, F. Myouga, K. Toyooka, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2015. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J. 84:1114-1123.
Tamang, B. G., and T. Fukao. 2015. Plant Adaptation to Multiple stresses during submergence and following desubmergence. Int. J. Mol. Sci. 16:30164-30180.
Tang, H., H. Bi, B. Liu, S. Lou, Y. Song, S. Tong, N. Chen, Y. Jiang, J. Liu, and H. Liu. 2021. WRKY33 interacts with WRKY12 protein to up‐regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana. New Phytol. 229:106-125.
Tang, J., H. Liu, Y. Quan, Y. Yao, K. Li, G. Tang, and D. Du. 2023. Fine mapping and causal gene identification of a novel QTL for early flowering by QTL-seq, Target-seq and RNA-seq in spring oilseed rape. Theor. Appl. Genet. 136:80.
Thind, A. K., T. Wicker, H. Šimková, D. Fossati, O. Moullet, C. Brabant, J. Vrána, J. Doležel, and S. G. Krattinger. 2017. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35:793-796.
Timón-Gómez, A., E. Nývltová, L. A. Abriata, A. J. Vila, J. Hosler, and A. Barrientos. 2018. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin. Cell Dev. Biol. 163-178.
Togi, S., H. Ura, and Y. Niida. 2021. Optimization and validation of multimodular, long-range PCR-based next-generation sequencing assays for comprehensive detection of mutation in tuberous sclerosis complex. J. Mol. Diagn. 23:424-446.
Tong, C., C. B. Hill, G. Zhou, X.-Q. Zhang, Y. Jia, and C. Li. 2021. Opportunities for improving waterlogging tolerance in cereal crops-physiological traits and genetic mechanisms. Plants 10:1560.
Torres, M. A., and J. L. Dangl. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397-403.
Tsai, K.-J., C.-Y. Lin, C.-Y. Ting, and M.-C. Shih. 2016. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation. Plant Physiol. 172:1548-1562.
Tsai, K. J., S. J. Chou, and M. C. Shih. 2014. Ethylene plays an essential role in the recovery of Arabidopsis during post‐anaerobiosis reoxygenation. Plant, Cell Environ. 37:2391-2405.
Valliyodan, B., T. T. Van Toai, J. D. Alves, P. De Fátima P. Goulart, J. D. Lee, F. B. Fritschi, M. A. Rahman, R. Islam, J. G. Shannon, and H. T. Nguyen. 2014. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int. J. Mol. Sci. 15:17622-17643.
Van Der Straeten, D., Z. Zhou, E. Prinsen, H. A. Van Onckelen, and M. C. Van Montagu. 2001. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol. 125:955-968.
van Dijk, E. L., H. Auger, Y. Jaszczyszyn, and C. Thermes. 2014. Ten years of next-generation sequencing technology. Trends Genet. 30:418-426.
van Veen, H., M. Akman, D. C. Jamar, D. Vreugdenhil, M. Kooiker, P. van Tienderen, L. A. Voesenek, M. E. Schranz, and R. Sasidharan. 2014. Group VII Ethylene response factor diversification and regulation in four species from flood‐prone environments. Plant, Cell Environ. 37:2421-2432.
van Veen, H., A. Mustroph, G. A. Barding, M. Vergeer-van Eijk, R. A. M. Welschen-Evertman, O. Pedersen, E. J. W. Visser, C. K. Larive, R. Pierik, J. Bailey-Serres, L. A. C. J. Voesenek, and R. Sasidharan. 2013. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691-4707.
van Zanten, M., T. L. Pons, J. A. M. Janssen, L. A. C. J. Voesenek, and A. J. M. Peeters. 2010. On the relevance and control of leaf angle. Crit. Rev. Plant Sci. 29:300-316.
Vandenbroucke, K., S. Robbens, K. Vandepoele, D. Inzé, Y. Van de Peer, and F. Van Breusegem. 2008. Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol. Biol. Evol. 25:507-516.
Vidoz, M. L., E. Loreti, A. Mensuali, A. Alpi, and P. Perata. 2010. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 63:551-562.
Visser, E. J., J. D. Cohen, G. W. Barendse, C. W. Blom, and L. A. Voesenek. 1996. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687-1692.
Voesenek, L., and J. Bailey-Serres. 2013. Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 16:647-653.
Voesenek, L. A. C. J., and J. Bailey-Serres. 2015. Flood adaptive traits and processes: an overview. New Phytol. 206:57-73.
Voesenek, L. A. C. J., J. J. Benschop, J. Bou, M. C. H. Cox, H. W. Groeneveld, F. F. Millenaar, R. A. M. Vreeburg, and A. J. M. Peeters. 2003. Interactions between plant hormones regulate submergence‐induced shoot elongation in the flooding‐tolerant dicot Rumex palustris. Ann. Bot. 91:205-211.
Voesenek, L. A. C. J., and C. W. P. M. Blom. 1989. Growth responses of Rumex species in relation to submergence and ethylene. Plant, Cell Environ. 12:433-439.
Voesenek, L. A. C. J., T. D. Colmer, R. Pierik, F. F. Millenaar, and A. J. M. Peeters. 2006. How plants cope with complete submergence. New Phytol. 170:213-226.
Voges, D., P. Zwickl, and W. Baumeister. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68:1015-1068.
Volkov, R. A., I. I. Panchuk, P. M. Mullineaux, and F. Schöffl. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61:733-746.
Vreeburg, R. A. M., J. J. Benschop, A. J. M. Peeters, T. D. Colmer, A. H. M. Ammerlaan, M. Staal, T. M. Elzenga, R. H. J. Staals, C. P. Darley, S. J. McQueen-Mason, and L. A. C. J. Voesenek. 2005. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant J. 43:597-610.
Vriezen, W. H., B. De Graaf, C. Mariani, and L. A. C. J. Voesenek. 2000. Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa. Planta 210:956-963.
Walczak, M., M. Skrzypczak-Zielinska, M. Plucinska, O. Zakerska-Banaszak, D. Marszalek, L. Lykowska-Szuber, K. Stawczyk-Eder, A. Dobrowolska, and R. Slomski. 2019. Long-range PCR libraries and next-generation sequencing for pharmacogenetic studies of patients treated with anti-TNF drugs. Pharmacogenomics J. 19:358-367.
Wallström, S. V., I. Florez-Sarasa, W. L. Araújo, M. Aidemark, M. Fernández-Fernández, A. R. Fernie, M. Ribas-Carbó, and A. G. Rasmusson. 2014. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. Mol. Plant 7:356-368.
Walsh, P., D. Bursać, Y. C. Law, D. Cyr, and T. Lithgow. 2004. The J‐protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5:567-571.
Wang, J., Z. Zhang, and R. Huang. 2013. Regulation of ascorbic acid synthesis in plants. Plant Signaling Behav. 8:e24536.
Wang, X.-J., Y. Jiao, S. Ma, J.-T. Yang, and Z.-X. Wang. 2020. Whole-genome sequencing: An effective strategy for insertion information analysis of foreign genes in transgenic plants. Front. Plant Sci. 11.
Wang, X., and S. Komatsu. 2022. The role of phytohormones in plant response to flooding. Int. J. Mol. Sci. 23:6383.
Wang, Y., D. Deng, R. Zhang, S. Wang, Y. Bian, and Z. Yin. 2012. Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol. Biol. Rep. 39:6267-6282.
Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.
Waszczak, C., M. Carmody, and J. Kangasjärvi. 2018. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69:209-236.
Weits, D. A., B. Giuntoli, M. Kosmacz, S. Parlanti, H.-M. Hubberten, H. Riegler, R. Hoefgen, P. Perata, J. T. van Dongen, and F. Licausi. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5:3425.
White, M. D., M. Klecker, R. J. Hopkinson, D. A. Weits, C. Mueller, C. Naumann, R. O’Neill, J. Wickens, J. Yang, and J. C. Brooks-Bartlett. 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8:14690.
Wojtaczka, P., A. Ciarkowska, E. Starzynska, and M. Ostrowski. 2022. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 194:113039.
Xiang, J. S., M. Kaplan, P. Dykstra, M. Hinks, M. McKeague, and C. D. Smolke. 2019. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat. Commun. 10:4327.
Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A. M. Ismail, J. Bailey-Serres, P. C. Ronald, and D. J. Mackill. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-708.
Xuewen, X., W. Huihui, Q. Xiaohua, X. Qiang, and C. Xuehao. 2014. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 179:388-395.
Yabuta, S., K. Ifuku, A. Takabayashi, S. Ishihara, K. Ido, N. Ishikawa, T. Endo, and F. Sato. 2010. Three PsbQ-Like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol. 51:866-876.
Yamamoto, A., M. N. H. Bhuiyan, R. Waditee, Y. Tanaka, M. Esaka, K. Oba, A. T. Jagendorf, and T. Takabe. 2005. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J. Exp. Bot. 56:1785-1796.
Yamauchi, T., S. Shimamura, M. Nakazono, and T. Mochizuki. 2013. Aerenchyma formation in crop species: a review. Field Crops Res. 152:8-16.
Yamauchi, T., A. Tanaka, N. Tsutsumi, Y. Inukai, and M. Nakazono. 2020. A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants 9:610.
Yamauchi, T., M. Yoshioka, A. Fukazawa, H. Mori, N. K. Nishizawa, N. Tsutsumi, H. Yoshioka, and M. Nakazono. 2017. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell 29:775-790.
Yan, J., H. He, L. Fang, and A. Zhang. 2018. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis. Biochem. Biophys. Res. Commun. 496:497-501.
Yang, C.-Y., and C.-P. Hong. 2015. The NADPH oxidase Rboh D is involved in primary hypoxia signalling and modulates expression of hypoxia-inducible genes under hypoxic stress. Environ. Exp. Bot. 115:63-72.
Yano, M., and T. Sasaki. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35:145-153.
Yeung, E., J. Bailey-Serres, and R. Sasidharan. 2019. After the deluge: Plant revival post-flooding. Trends Plant Sci. 24:443-454.
Yeung, E., H. van Veen, D. Vashisht, A. L. Sobral Paiva, M. Hummel, T. Rankenberg, B. Steffens, A. Steffen-Heins, M. Sauter, and M. de Vries. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 115:e6085-6094.
Yi, Y., M. A. Hassan, X. Cheng, Y. Li, H. Liu, W. Fang, Q. Zhu, and S. Wang. 2023. QTL mapping and analysis for drought tolerance in rice by genome-wide association study. Front. Plant Sci. 14.
Yordanova, R. Y., and L. P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
You, J., D. Li, L. Yang, S. S. K. Dossou, R. Zhou, Y. Zhang, and L. Wang. 2022. CRISPR/Cas9-mediated efficient targeted mutagenesis in sesame (Sesamum indicum L.). Front. Plant Sci. 13:935825.
Yu, J., W. Zhao, W. Tong, Q. He, M.-Y. Yoon, F.-P. Li, B. Choi, E.-B. Heo, K.-W. Kim, and Y.-J. Park. 2018. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int. J. Mol. Sci. 19:3145.
Zaidem, M. L., S. C. Groen, and M. D. Purugganan. 2019. Evolutionary and ecological functional genomics, from lab to the wild. Plant J. 97:40-55.
Zaidi, P. H., S. Rafique, P. K. Rai, N. N. Singh, and G. Srinivasan. 2004. Tolerance to excess moisture in maize (Zea mays L.): susceptible crop stages and identification of tolerant genotypes. Field Crops Res. 90:189-202.
Zeng, H., L. Xu, A. Singh, H. Wang, L. Du, and B. W. Poovaiah. 2015. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front. Plant Sci. 6.
Zhang, J., J. Yang, L. Zhang, J. Luo, H. Zhao, J. Zhang, and C. Wen. 2020a. A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Sci. Rep. 10:5623.
Zhang, P., D. Lyu, L. Jia, J. He, and S. Qin. 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics 18:1-14.
Zhang, S., T. Jia, Z. Zhang, X. Zou, S. Fan, K. Lei, X. Jiang, D. Niu, Y. Yuan, and H. Shang. 2020b. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. Plant Physiol. Biochem. 147:251-261.
Zhao, F. a., W. Fang, D. Xie, Y. Zhao, Z. Tang, W. Li, L. Nie, and S. Lv. 2012. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Plant Sci. 185-186:176-184.
Zhao, Y., W. Zhang, S. F. Abou-Elwafa, S. Shabala, and L. Xu. 2021. Understanding a mechanistic basis of ABA involvement in plant adaptation to soil flooding: The current standing. Plants 10:1982.
Zhou, J., C. Y. Park, C. L. Theesfeld, A. K. Wong, Y. Yuan, C. Scheckel, J. J. Fak, J. Funk, K. Yao, and Y. Tajima. 2019. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 51:973-980.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98698-
dc.description.abstract甘藍 (Brassica oleracea L. var. capitata) 為臺灣重要蔬菜作物,農業生產上容易遭受降雨造成的淹水逆境影響,造成嚴重經濟損失。因此,了解甘藍耐淹基礎分子機制對於品種育成具重要應用價值。本研究欲透過不同次世代定序技術,針對本研究室先前建立之8個與甘藍耐淹相關數量性狀基因座區間內,分析耐淹品種甘藍‘大蕊’ (‘Fuyudori’) 與不耐淹品種甘藍‘228’之間的基因體序列及轉錄體差異,探討可能導致兩品種耐淹能力不同之關聯性。以目標區域定序策略針對甘藍株高相關數量性狀基因座C7_44554117總長500 kb之區間範圍進行定序,共獲得20個預測為高影響變異之基因,其中,‘大蕊’與‘228’中分別具有6個與10個變異存在於單一品種之基因。全基因體定序則對‘大蕊’與‘228’兩甘藍品種進行分析,於8個甘藍耐淹數量性狀基因座區間內獲得‘大蕊’中的299個與‘228’中的244個預測為高影響變異之基因,其中,‘大蕊’與‘228’中分別具有96與41個變異存在於單一品種之基因。根據變異資訊與基因功能註解,選出29個與耐淹性相關之基因。另外利用本研究室既有之轉錄體定序數據,分析甘藍於淹水期間之基因表現變化。自8個甘藍耐淹數量性狀基因座區間範圍內,獲得90個於淹水處理下與兩品種間具有差異表現之基因,並選出26個與耐淹性相關之基因。整合三策略之資訊後獲得12個具品種特異性變異與差異表現之基因,其中抗氧化酵素相關基因PER50在兩甘藍品種淹水期間被誘導表現,且‘大蕊’表現提升較‘228’多,推測‘大蕊’具有較佳於淹水逆境下維持ROS平衡的能力;此外,負責氧化細胞分裂素之基因CKX7,在‘大蕊’中具有位於蛋白質結構域內的序列變異,可能因此改變其蛋白質功能進而影響其淹水耐受性。整體而言,本研究提供甘藍耐淹調控機制解析之資訊,期望助於提升耐淹甘藍品種之育成效率。zh_TW
dc.description.abstractCabbage (Brassica oleracea L. var. capitata) is one of the most important vegetable crops in Taiwan. Flooding stress caused by heavy rainfall often affected its agricultural production, resulting in significant economic losses. Therefore, elucidating the molecular mechanisms underlying flooding tolerance in cabbage is crucial for breeding flood-tolerant cultivars. This study aims to investigate the genomic and transcriptomic differences within the flanking region of eight previously identified quantitative trait loci (QTLs) associated with flooding tolerance between a flooding-tolerant cabbage cultivar, ‘Fuyudori’, and a flooding-intolerant cultivar, ‘228’, based on next-generation sequencing (NGS) strategies to explore the potential molecular basis underlying their differential flooding tolerance. Targeted sequencing for a 500 kb flanking region of the QTL C7_44554117 that is associated with plant height trait identified a total of 20 genes with predicted high-impact variants, among which 6 and 10 genes were found exclusively in ‘Fuyudori’ and ‘228’, respectively. Whole-genome sequencing (WGS) analysis within the flanking region of eight QTL identified 299 and 244 genes with predicted high-impact variants in ‘Fuyudori’ and ‘228’, respectively, including 96 and 41 genes with unique variants. Based on variant information and gene function annotation, 29 candidate genes associated with cabbage flooding tolerance were selected. Additionally, 90 differentially expressed genes (DEGs) under flooding treatment within the same QTL regions were identified based on the existing RNA sequencing (RNA-seq) in our laboratory, of which 26 were considered associated with flooding tolerance. By integrating the results of the three strategies, 12 candidate genes were identified as harboring both cultivar-specific variants and differential expression under flooding stress. Among these, the antioxidant-related gene PER50 was induced during flooding in both cultivars, with a higher expression increase observed in ‘Fuyudori’, suggesting its involvement in maintaining reactive oxygen species (ROS) homeostasis under stress conditions. Furthermore, the CKX7 gene, which encodes a cytokinin dehydrogenase, harbored a sequence variant within a functional domain in ‘Fuyudori’, potentially affecting its protein function and consequently influencing flooding tolerance. In conclusion, this study provides valuable insights into the molecular regulation mechanisms of flooding tolerance in cabbage. It identifies potential candidate genes for future functional validation and molecular marker-assisted selection, thereby contributing to the development of flood-tolerant cabbage cultivars.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:08:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:08:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目次 v
圖次 ix
表次 x
附錄 xi
前言 1
第一章 前人研究 2
第一節 植物於淹水逆境下的反應 2
(一) 淹水逆境下植物的形態變化 2
(二) 淹水逆境下植物的代謝調節 4
(三) 植物應對淹水逆境的逃脫與靜止策略 6
(四) 植物對淹水反應之調控機制 7
第二節 甘藍耐淹數量性狀基因座(quantitative trait loci, QTLs) 10
(一) 數量性狀基因座建構與鑑定 10
(二) 逆境耐受性相關QTL研究進展與應用 11
(三) 本研究室甘藍耐淹QTL之建立 12
第三節 次世代定序(next-generation sequencing, NGS)發展與應用 13
(一) 目標區域定序(targeted sequencing, targeted-seq) 13
(二) 全基因體定序(whole-genome sequencing, WGS) 14
(三) 轉錄體定序 (RNA-seq) 15
第二章 材料與方法 17
第一節 植物材料 17
(一) 植株栽培 17
(二) 去氧核糖核酸萃取(DNA extraction):十六烷基三甲基溴化銨(cetyltrimethylammonium bromide, CTAB)法 17
第二節 甘藍耐淹QTL區間之目標區域定序分析 18
(一) 長片段聚合酶連鎖反應(long-range polymerase chain reaction, long-range PCR, LR-PCR)引子設計 18
(二) Long-range PCR擴增目標QTL區間片段 18
(三) PCR擴增之DNA片段純化 18
(四) 目標區域定序(targeted-seq) 19
第三節 甘藍全基因體定序(WGS)分析 19
第四節 序列變異檢測與註解 20
第五節 甘藍轉錄體定序(RNA-seq)分析 20
第三章 結果 22
第一節 QTL區域之long-range PCR擴增與targeted-seq 22
(一) long-range PCR擴增效率 22
(二) targeted-seq序列品質管控結果 22
(三) ‘大蕊’與‘228’之耐淹QTL C7_44554117中變異檢測資訊 23
第二節 WGS分析結果 23
(一) WGS序列品質管控結果 23
(二) ‘大蕊’與‘228’之WGS變異檢測資訊 23
第三節 耐淹相關基因之變異資訊與功能註解分析 24
(一) 葉片角度相關QTL 24
(二) 萎凋相關QTL 25
(三) 株高相關QTL 26
第四節 RNA-seq分析結果 28
(一) 轉錄調控與離子相關基因表現 29
(二) 荷爾蒙相關基因表現 30
(三) 能量代謝、光合作用相關基因表現 30
(四) 氧化逆境、形態變化相關基因表現 31
第五節 策略資訊整合於甘藍耐淹相關基因之探勘 32
第四章 討論 33
第一節 NGS技術於QTL區間基因探勘之應用 33
(一) long-range PCR配合targeted-seq之效益評估 33
(二) NGS之變異資訊分析 34
第二節 耐淹相關基因表現量與序列變異之關聯 34
(一) 缺氧感應與訊號傳遞 34
(二) 轉錄調控 35
(三) 能量代謝 36
(四) 荷爾蒙調節 38
(五) 氧化逆境 40
(六) 形態變化 41
第五章 結論 42
結果圖表 43
附錄 66
參考文獻 68
-
dc.language.isozh_TW-
dc.subject數量性狀基因座zh_TW
dc.subject基因體學zh_TW
dc.subject淹水耐受性zh_TW
dc.subject甘藍zh_TW
dc.subjectflooding toleranceen
dc.subjectgenomicsen
dc.subjectquantitative trait locien
dc.subjectBrassica oleracea L. var. capitataen
dc.title利用基因體學策略探勘甘藍耐淹水相關基因zh_TW
dc.titleGenomic Strategies for Exploring Genes Associated with Flooding Tolerance in Brassica oleracea L. var. capitataen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林淑怡;林雅芬zh_TW
dc.contributor.oralexamcommitteeShu-I Lin;Ya-Fen Linen
dc.subject.keyword甘藍,淹水耐受性,基因體學,數量性狀基因座,zh_TW
dc.subject.keywordBrassica oleracea L. var. capitata,flooding tolerance,genomics,quantitative trait loci,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202503460-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-liftN/A-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved