Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorHong-Yueh Loen
dc.contributor.author吳世煌zh_TW
dc.contributor.authorShih-Huang Wuen
dc.date.accessioned2025-08-18T16:06:57Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAiry, G. (1845). Tides and Waves: Extracted from the Encyclopaedia Metropolitana, Tom. V Pag. 241 - 396. William Clowes and Sons.
Beatty, S. J., Hall, M., Buckham, B. J., Wild, P., and Bocking, B. (2015). Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Engineering, 104, 370–386.
Chang, G., Jones, C. A., Roberts, J. D., and Neary, V. S. (2018). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127, 344–354.
Devolder, B., Rauwoens, P., and Troch, P. (2016). Numerical simulation of a single floating point absorber wave energy converter using OpenFOAM®. In Progress in Renewable Energies Offshore – Guedes Soares (Ed.), pages 197–205. Taylor & Francis Group, London. Conference Paper, October 2016.
Devolder, B., Rauwoens, P., and Troch, P. (2017). Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®. Coastal Engineering, 125, 81–94.
Devolder, B., Schmitt, P., Rauwoens, P., Elsaesser, B., and Troch, P. (2015). A review of the implicit motion solver algorithm in OpenFOAM® to simulate a heaving buoy. In 18th Numerical Towing Tank Symposium (NuTTS’15).
Edwards, E. (2020). Optimization of the geometry of axisymmetric point-absorber wave energy converters. PhD thesis, Massachusetts Institute of Technology.
Edwards, E. C. and Yue, D. K.-P. (2022). Optimisation of the geometry of axisymmetric point-absorber wave energy converters. Journal of Fluid Mechanics, 933, A1.
Edwards, E. C. and Yue, D. K.-P. (2024). Optimisation of the geometry of axisymmetric point-absorber wave energy converters–corrigendum. Journal of Fluid Mechanics, 1001, E1.
Falnes, J. and Kurniawan, A. (2020). Ocean waves and oscillating systems: linear interactions including wave-energy extraction, volume 8. Cambridge university press.
Garcia-Teruel, A., DuPont, B., and Forehand, D. I. (2020). Hull geometry optimisation of wave energy converters: On the choice of the optimisation algorithm and the geometry definition. Applied Energy, 280, 115952.
Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331.
Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. In Proceedings of 15th International Conference on Coastal Engineering, pages 828–845. American Society of Civil Engineers.
Greenshields, C. (2020). OpenFOAM v8 User Guide. The OpenFOAM Foundation, London, UK.
Gu, H., Stansby, P., Stallard, T., and Moreno, E. C. (2018). Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water. Journal of Fluids and Structures, 82, 343–356.
Guo, B. and Ringwood, J. V. (2021). Geometric optimisation of wave energy conversion devices: A survey. Applied Energy, 297, 117100.
Higuera, P. (2017). olaFlow: CFD for waves [Software].
Higuera, P., Lara, J. L., and Losada, I. J. (2013a). Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®. Coastal Engineering, 71, 102–118.
Higuera, P., Lara, J. L., and Losada, I. J. (2013b). Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®. Coastal Engineering, 71, 102–118.
Hirt, C. W. and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.
Jin, S., Patton, R. J., and Guo, B. (2018). Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment. Renewable Energy, 129, 500–512.
Jin, S., Patton, R. J., and Guo, B. (2019). Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning. Energy, 169, 819–832.
Khan, N., Kalair, A., Abas, N., and Haider, A. (2017). Review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable Energy Reviews, 72, 590– 604.
Kluger, J. M., Haji, M. N., and Slocum, A. H. (2023). The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage. Applied Energy, 331, 120389.
Larsen, B. E., Fuhrman, D. R., and Roenby, J. (2019). Performance of interFoam on the simulation of progressive waves. Coastal Engineering Journal, 61(3), 380–400.
Liu, D. P., Manuel, L., and Coe, R. G. (2024). On extending the life of floating offshore wind turbines via sheltering effects of upstream wave energy converters. In International Conference on Offshore Mechanics and Arctic Engineering, volume 87790, page V002T02A053. American Society of Mechanical Engineers.
Liu, Y. (2021). Introduction of the open-source boundary element method solver HAMS to the ocean renewable energy community. In Proceedings of the European wave and tidal energy conference: EWTEC 2021. Technical Committee of the European Wave and Tidal Energy Conference (EWTEC).
Melikoglu, M. (2018). Current status and future of ocean energy sources: A global review. Ocean Engineering, 148, 563–573.
Menter, F., Ferreira, J. C., Esch, T., and Konno, B. (2003). The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In Proceedings of the International Gas Turbine Congress 2003, Tokyo, Japan. 2–7 November 2003.
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605.
Mulbah, C., Kang, C., Mao, N., Zhang, W., Shaikh, A. R., and Teng, S. (2022). A review of VOF methods for simulating bubble dynamics. Progress in Nuclear Energy, 154, 104478.
Rahimi, A., Rezaei, S., Parvizian, J., Mansourzadeh, S., Lund, J., Hssini, R., and Düster, A. (2022). Numerical and experimental study of the hydrodynamic coefficients and power absorption of a two-body point absorber wave energy converter. Renewable Energy, 201, 181–193.
Schmitt, P., Windt, C., Davidson, J., Ringwood, J. V., and Whittaker, T. (2019). The efficient application of an impulse source wavemaker to CFD simulations. Journal of Marine Science and Engineering, 7(3), 71.
Si, Y., Chen, Z., Zeng, W., Sun, J., Zhang, D., Ma, X., and Qian, P. (2021). The influence of power-take-off control on the dynamic response and power output of combined semisubmersible floating wind turbine and point-absorber wave energy converters. Ocean Engineering, 227, 108835.
Stokes, G. G. (1847). On the theory of oscillatory waves. Trans. Cam. Philos. Soc., 8, 441–455.
Stratigaki, V. (2014). Experimental study and numerical modelling of intra-array interactions and extra-array effects of wave energy converter arrays. PhD thesis, Ghent University.
Windt, C., Davidson, J., Schmitt, P., and Ringwood, J. V. (2019). On the assessment of numerical wave makers in CFD simulations. Journal of Marine Science and Engineering, 7(2), 47.
Zhao, K. and Liu, P. L.-F. (2022). On Stokes wave solutions. Proceedings of the Royal Society A, 478(2258), 20210732.
Zhao, K., Wang, Y., and Liu, P. L.-F. (2024). A guide for selecting periodic water wave theories-Le Méhauté (1976)’s graph revisited. Coastal Engineering, 188, 104432.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98691-
dc.description.abstract本研究以開源計算流體力學軟體 OpenFOAM v8,基於雷諾平均納維-斯托克斯方程式,建立三維數值水槽,將起伏運動的能量擷取系統 (power take off system,PTO) 簡化成線性阻尼,模擬點吸式波浪發電裝置浮體的真實起伏運動, 並限制其他方向運動,以審視 Edwards and Yue (2022, Journal of Fluid Mechanics, 933, A1) 基於線性勢流理論和深水假設的點吸式波浪發電裝置浮體形狀優化框架中,只在起伏運動方向,並限制其他五個運動方向的圓柱和最佳化形狀 (no-kink-2nd-order) 所預測的發電效率及動態響應的差異。線性勢流理論雖廣泛應 用於浮體初步設計,但因未考慮黏滯力與水面上形狀等影響,對阻尼與動態響應的預測準確性有限。由模擬結果顯示,在深水二階斯托克斯波作用下,圓柱和最佳化形狀的發電效率相近,其運動響應約為波浪振幅的 0.7 倍,未達到理論預測的 3 倍,顯示線性勢流理論高估浮體動態響應。此外,本研究深入探討不同的參數改變對於發電效率的影響;第一為固定週期和水深,發現波高越小,無因次化後的發電效率越好;第二為固定波高和週期,發現圓柱在中間水深條件下之發電效率略低於深水條件,係因為其沒水深度較深,使底部所受到的能量相較於深水波還要小,而最佳化形狀由於沒水深度較淺,中間水深和深水所受到的波浪能量相當,所以發電效率表現較不敏感;第三為浮體密度變小,且圓柱和最佳化形狀的水下形狀與 Edwards and Yue (2022) 相同,發現兩浮體密度變小,發電效率會增加,尤其在浮體剛好不會被液體淹沒的時候,會有最好的發電效率,當密度再繼續降低,發電效率趨緩甚至不再增加;第四為 PTO 的線性阻尼變化,發現在未發生共振情況下,發電效率主要受到 PTO 線性阻尼係數的主導。當阻尼設定為自身輻射阻尼的 20 倍時,圓柱與最佳化形狀的發電效率分別提升約 3.7 倍與 4.5 倍,當線性阻尼係數繼續增加,發電效率因浮體起伏運動速度降低顯著而下降;最後本研究設計三種新浮體形狀,其沒水表面積與圓柱或是最佳化形狀相同且線性阻尼係數為自身的輻射阻尼係數,發現未產生共振現象,且新形狀之起伏運動振幅與圓柱和最佳化形狀相近,但新形狀有更大的輻射阻尼係數,因此發電效率較高,顯示在難以達成共振的情境下,選用輻射阻尼係數較高的浮體形狀能提升發電效率。綜合以上結果,顯示線性勢流理論在不考慮黏滯力和水面上形狀下,無法準確預測真實的動態響應,並難以反映浮體密度、波高、沒水深度等關鍵參數改變對發電效率的影響。本研究成果不僅揭示線性勢流理論的侷限性,更提供未來波浪發電裝置設計一具體、可行之數值分析與優化參考依據。zh_TW
dc.description.abstractThis study utilizes the open-source computational fluid dynamics software OpenFOAM v8, based on the Reynolds-Averaged Navier–Stokes equations, to establish a three-dimensional numerical wave tank. The power take-off system (PTO) in the heave mode of the point-absorber wave energy converter is simplified as a linear damping model to simulate the realistic heaving motion of the floating body, while constraining other degrees of freedom. This simulation aims to examine the differences in predicted power generation efficiency and dynamic response between the cylindrical and optimized (no-kink-2nd-order) shapes from Edwards and Yue (2022, Journal of Fluid Mechanics, 933, A1), which are based on linear potential flow theory and deep-water assumptions, specifically considering motion only in the heave direction and constraining the other five degrees of freedom. Although linear potential flow theory is widely used in preliminary floating body designs, its predictions regarding damping and dynamic response are limited due to neglecting viscous effects and the influence of above-water geometry. Simulation results show that under deep-water second-order Stokes waves, the power generation efficiencies of both the cylindrical and optimized shapes are similar, with their heave motion amplitudes approximately 0.7 times the wave amplitude, which falls short of the theoretically predicted factor of 3, indicating an overestimation of dynamic response by linear potential flow theory. Further parametric studies reveal the following: (1) with fixed wave period and water depth, power generation efficiency improves as wave height decreases; (2) with fixed wave height and period, the power of cylindrical shape generation efficiency in intermediate water depths is slightly lower than in deep water, due to its deeper draft causing less wave energy to reach its bottom compared to deep water; conversely, the optimized shape, with a shallower draft, captures wave energy effectively in both intermediate and deep water depths, making its efficiency less sensitive to water depth changes; (3) reducing the density of floating body while maintaining the underwater geometry consistent with Edwards and Yue (2022), the power generation efficiency increases and reaches its peak when the body is just barely not fully submerged by the liquid. Further reductions in density result in diminishing returns or stagnation in power generation efficiency; (4) variation in the linear damping coefficient of the PTO in the heave mode shows that, absent resonance, power generation efficiency is mainly governed by this coefficient. When the damping is set to twenty times the radiation damping coefficient, the cylindrical and optimized shapes achieve approximately 3.7 and 4.5 times improvements in power generation efficiency, respectively. However, further increases in the linear damping coefficient reduce efficiency due to significant decreases in the heave velocity of the floating body. Finally, three new floating body shapes with identical underwater surface areas to the cylindrical or optimized shapes were designed, and their PTO damping coefficients were set equal to their own radiation damping. These new shapes exhibited no resonance and showed heave motion amplitudes comparable to the cylindrical and optimized shapes. However, due to their larger radiation damping coefficients, the new shapes demonstrated higher power generation efficiencies. This indicates that in scenarios where resonance is difficult to achieve, selecting floating bodies with larger radiation damping coefficient can enhance power conversion performance. In summary, the results indicate that linear potential flow theory, neglecting viscous effects and above-water geometry, cannot accurately predict the real dynamic responses nor reflect the influence of key parameters such as floating body density, wave height, and draft on power generation efficiency. This study not only reveals the limitations of linear potential flow theory but also provides a concrete and feasible numerical analysis and optimization reference for future wave energy converter designs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:06:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:06:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 iii
摘要 v
Abstract vii
目次 xi
圖次 xv
表次 xix
符號列表 xxi
第一章 緒論 1
1.1 文獻回顧 2
1.1.1 水動力學 3
1.1.2 計算流體力學 6
1.2 研究動機 7
1.3 研究目的 9
1.4 研究方法 9
1.5 本文架構 10
第二章 數值模型 13
2.1 控制方程式 13
2.2 流體體積法 14
2.3 紊流模式 16
2.4 數值沙灘 18
2.5 求解演算法 18
2.6 浮體運動動網格計算 20
2.7 本研究之數值模型設定 22
2.7.1 浮體運動之設定 22
2.7.2 浮體網格之貼合設定 23
2.7.3 輸出控制 23
第三章 週期波理論 25
第四章 水動力學分析 33
第五章 數值模型驗證 37
5.1 數值沙灘 39
5.2 二維數值水槽造波網格敏感性測試 40
5.2.1 二維數值水槽網格設定 40
5.2.2 二維數值水槽邊界設定 48
5.2.3 網格敏感性測試結果 50
5.3 浮體運動模擬驗證 51
5.3.1 自由衰減測試 52
5.3.2 造波測試 55
5.4 浮體形狀驗證 60
5.5 庫朗數敏感性測試 63
5.6 層流與紊流模式 65
5.7 對稱面設定 65
5.8 邊界敏感性測試 69
5.9 浮體運動網格敏感性測試 71
5.9.1 三維數值水槽網格設定 73
5.9.2 浮體起伏運動網格敏感性測試結果 78
第六章 模擬結果與討論 81
6.1 Edwards and Yue (2022) 之形狀模擬結果 82
6.1.1 發電量計算 83
6.1.2 共振方程式之討論 86
6.2 波高對於發電效率之影響 88
6.2.1 圓柱模擬結果 89
6.2.2 最佳化形狀模擬結果 91
6.2.3 小結 94
6.3 水深對於發電效率之影響 95
6.3.1 圓柱模擬結果 95
6.3.2 最佳化形狀模擬結果 98
6.3.3 小結 100
6.4 浮體密度對於發電效率之影響 102
6.4.1 圓柱模擬結果 102
6.4.2 最佳化形狀模擬結果 106
6.4.3 小結 111
6.5 PTO 阻尼對於發電效率之影響 114
6.5.1 圓柱模擬結果 114
6.5.2 最佳化形狀模擬結果 117
6.5.3 小結 120
6.6 其他浮體形狀對於發電效率之影響 121
6.6.1 頂部未延伸圓柱與新形狀#1 121
6.6.2 頂部延伸5 公尺的圓柱與新形狀#2 125
6.6.3 頂部延伸2.5 公尺的最佳化形狀與新形狀#3 128
6.7 模擬結果總結 132
第七章 結論與未來展望 135
7.1 結論 135
7.2 未來展望 137
7.2.1 物理實驗 137
7.2.2 動網格之設定 137
7.2.3 不規則波 138
7.2.4 結構網格 138
7.2.5 工具箱改善 138
參考文獻 139
附錄A — 數值沙灘編譯 145
A.1 createNumericalBeach.H 145
A.2 UEqn.H 151
A.3 createFields.H 151
A.4 NumericalBeachDict 152
附錄B — 圓柱模擬檔案 153
B.1 system 資料夾 153
B.2 constant 資料夾 158
-
dc.language.isozh_TW-
dc.subject計算流體力學zh_TW
dc.subject點吸式波浪發電裝置zh_TW
dc.subject浮體形狀優化zh_TW
dc.subject輻射阻尼係數zh_TW
dc.subject能量擷取系統(PTO)zh_TW
dc.subject週期波zh_TW
dc.subjectFloating body shape optimizationen
dc.subjectComputational fluid dynamicsen
dc.subjectPeriodic wavesen
dc.subjectPower take off systemen
dc.subjectRadiation damping coefficienten
dc.subjectPoint-absorber wave energy converteren
dc.title點吸式波浪發電裝置最佳化形狀之計算流體力學研究zh_TW
dc.titleA CFD Study on the Shape Optimization of Point-absorber Wave Energy Convertersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊舜涵;林宗岳;于弋翔zh_TW
dc.contributor.oralexamcommitteeShun-Han Yang;Tsung-Yueh Lin;Yi-Hsiang Yuen
dc.subject.keyword計算流體力學,點吸式波浪發電裝置,浮體形狀優化,輻射阻尼係數,能量擷取系統(PTO),週期波,zh_TW
dc.subject.keywordComputational fluid dynamics,Point-absorber wave energy converter,Floating body shape optimization,Radiation damping coefficient,Power take off system,Periodic waves,en
dc.relation.page161-
dc.identifier.doi10.6342/NTU202503682-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf40.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved