Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98686
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-chih Wuen
dc.contributor.author陳奕廷zh_TW
dc.contributor.authorYi-Ting Chenen
dc.date.accessioned2025-08-18T16:05:40Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationKinoshita, S. (2008). Structural colors in the realm of nature. World Scientific Publishing.
Macleod, H. A. (2001). Thin-film optical filters. Institute of Physics Publishing.
Raut, H., Venkatesan, A. G., Nair, S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4, 3779–3804.
Schulz, U., Schallenberg, U. B., & Kaiser, N. (2002). Antireflection coating design for plastic optics. Applied Optics, 41, 3107.
Abdalgaffar, A. N., Ali, A. H., & Jasem, N. A. (2016). New construction stacks for optimization designs of edge filter. IOSR Journal of Applied Physics, 8, 20.
Jeong, S.-H., Kim, J.-K., Kim, B.-S., Shim, S.-H., & Lee, B.-T. (2004).Characterization of SiO₂ and TiO₂ films prepared using RF magnetron sputtering and their application to anti-reflection coating. Vacuum, 76, 507–515.
王子綺(2024)。具控制場型之微型發光二極體研究 (未出版碩士論文)。國立臺灣大學,臺北市。
Han, C., Zhou, L., Ma, H., Li, C., Zhang, S., Cao, H., Zhang, L., & Yang, H. (2019).Fabrication of a controllable anti-peeping device with a laminated structure of microlouver and polymer dispersed liquid crystals film. Liquid Crystals, 46(11), 1525–1534.
Shen, Y., et al. (2016). Broadband angular selectivity of light at the nanoscale:Progress, applications, and outlook. Applied Physics Reviews, 3(1), 011103.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.
Karniadakis, G. E., et al. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440.
Aghababaiyan, K. (2020). Improving performance of neurons by adding color noise.IET Nanobiotechnology, 14.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–440.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98686-
dc.description.abstract綜觀顯示技術的發展,微型發光二極體(Micro Light Emitting Diode Display, Micro LED)顯示器已是繼液晶顯示器(Liquid-Crystal Display, LCD)、有機發光二極體(Organic Light-Emitting Diode, OLED)顯示器之後另一個新興且蓬勃發展的顯示技術,憑藉著其高對比度、長壽命、低功耗等優點更被視為重要次世代的顯示技術。得益於微型發光二極體極微小的晶粒尺寸,透明顯示器已成為了其重要的應用場景。然而,目前微型發光二極體透明顯示器仍有一些工程問題尚待解決,如:製程良率、發光效率以及顯示器背側漏光影響使用者視覺體驗等,影響應用推廣。本研究將針對透明顯示器背側的漏光探討利用抗反射光學薄膜改善的可能性。
首先,第一章將簡介薄膜光學、抗反射光學薄膜及造成透明顯示器背側漏光的成因及其現有解決方案,並概述後續用於設計、優化抗反射光學薄膜的機器學習演算法及人工神經網絡。第二章則聚焦於如何建構一光學薄膜優化系統,當中包含了以 Maxwell’s Equations 以及 Fresnel Equation 作為基礎的轉移矩陣及人工神經網絡。第三章則會利用第二章所建構的光學薄膜優化系統,依據微型發光二極體透明顯示器的應用場景擬定對應的設計方案,並進行實作及驗證。最後,經由實驗驗證,本研究所設計的抗反射光學薄膜根據視角的不同至多有效減少約 50%顯示器背側漏光的產生。
zh_TW
dc.description.abstractWith the continuous evolution of display technologies, the Micro Light-Emitting Diode (Micro LED) display has emerged as a promising next-generation technology following Liquid Crystal Displays (LCDs) and Organic Light-Emitting Diode (OLED) displays. Owing to its high contrast ratio, long operational lifetime, and low power consumption, Micro LED has been widely regarded as an important display technology.
Benefiting from the ultra-small chip size of Micro LEDs, transparent displays have become one of their key application areas. However, Micro LED transparent displays still face some engineering challenges, including process yield, luminous efficiency, and the light leakage on the backside of the display, which can negatively impact the viewer's visual experience. These issues are among the main reasons why this technology has yet to reach widespread commercialization. This study aims to explore the potential of using anti-reflection optical thin films to mitigate light leakage issue on the backside of transparent displays.
Chapter 1 introduces the fundamentals of thin-film optics and anti-reflection optical films along with the origin of the light leakage observed on the backside of transparent displays and the existing solutions. It also provides an overview of the machine learning algorithms and artificial neural networks applied in the subsequent design and optimization processes. Chapter 2 focuses on the construction of an optical thin-film optimization system based on Maxwell’s equations and Fresnel equations, employing the transfer matrix method and neural network models. In Chapter 3, the proposed system is applied to develop an optimized anti-reflection thin-film design tailored to Micro LED transparent display applications, followed by fabrication and experimental validation. Experimental results demonstrate that the designed anti-reflective thin film can reduce the visibility of the backside light leakage by up to approximately 50%, depending on the viewing angle.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:05:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:05:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstractiii
目次iv
圖次vi
表次ix
第一章 緒論 1
1.1 薄膜光學簡介 1
1.2 抗反射光學薄膜簡介及其應用 1
1.3 Micro LED 透明顯示器及其背側漏光之探討 2
1.4 機器學習及人工神經網絡簡介 4
1.5 研究動機與論文架構 6
第一章圖表 7
第二章 薄膜光學優化演算法 16
2.1 前言 16
2.2 Maxwell’s Equation 與 Fresnel Equation 16
2.3 轉移矩陣法 19
2.3.1 傳播矩陣 20
2.3.2 邊界矩陣 21
2.3.3 定義穿透係數與穿透率 25
2.4 機器學習與其演算法 28
第二章圖表 32
第三章 抗反射光學薄膜之最佳化與應用 36
3.1 前言 36
3.2 光學薄膜優化系統架構及設計限制 36
3.3 抗反射光學薄膜設計方案 37
3.4 實驗方法 39
3.4.1 薄膜濺鍍製程測試 39
3.4.2 多層膜濺鍍製程 40
3.4.3 光譜量測 41
第三章圖表 44
第四章 總結與未來展望 78
4.1 總結 78
參考文獻 79
-
dc.language.isozh_TW-
dc.subject薄膜光學zh_TW
dc.subject微型發光二極體透明顯示器zh_TW
dc.subject人工神經網絡zh_TW
dc.subject機器學習zh_TW
dc.subject梯度下降法zh_TW
dc.subject抗反射光學薄膜zh_TW
dc.subjectMicro LED transparent displayen
dc.subjectthin-film opticsen
dc.subjectgradient descenten
dc.subjectartificial neural networken
dc.subjectmachine learningen
dc.subjectanti-reflective filmsen
dc.title運用機器學習於抗反射光學薄膜之優化與應用zh_TW
dc.titleInvestigation and application of machine learning in anti-reflection optical filmsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張志豪;蔡志宏zh_TW
dc.contributor.oralexamcommitteeChih-Hao Chang;Chih-Hung Tsaien
dc.subject.keyword微型發光二極體透明顯示器,薄膜光學,抗反射光學薄膜,梯度下降法,機器學習,人工神經網絡,zh_TW
dc.subject.keywordMicro LED transparent display,thin-film optics,anti-reflective films,gradient descent,machine learning,artificial neural network,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202503479-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved