Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真zh_TW
dc.contributor.advisorChih-Chen Hsiehen
dc.contributor.author陳奕豪zh_TW
dc.contributor.authorYi-Hao Chenen
dc.date.accessioned2025-08-18T16:05:14Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1. Gan, L. and A. Ros, Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device. 2015, Arizona State University.
2. Sridharan, S., et al., Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis, 2011. 32(17): p. 2274-81.
3. Pohl, H.A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
4. Voldman, J., Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng, 2006. 8(Volume 8, 2006): p. 425-54.
5. Lenshof, A. and T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev, 2010. 39(3): p. 1203-17.
6. JONES, T.B., Electromechanics of Particles. 1995: p. 1-265.
7. Pethig, R., Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. Electrophoresis, 2019. 40(18-19): p. 2575-2583.
8. Regtmeier, J., et al., Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications. Electrophoresis, 2011. 32(17): p. 2253-2273.
9. Freedman, K.J., et al., Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat Commun, 2016. 7(1): p. 10217.
10. Barik, A., et al., Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat Commun, 2017. 8(1): p. 1867.
11. Chou, C.F., et al., Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J, 2002. 83(4): p. 2170-9.
12. Ying, L., et al., Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys J, 2004. 86(2): p. 1018-27.
13. Puri, P., et al., Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis. Biomed Microdevices, 2018. 20(4): p. 102.
14. Farasat, M., et al., A dielectrophoresis-based microfluidic chip for trapping circulating tumor cells using a porous membrane. Journal of Micromechanics and Microengineering, 2021. 32(1).
15. Sabounchi, P., et al., Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices, 2008. 10(5): p. 661-70.
16. Schafer, C., D.P. Kern, and M. Fleischer, Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis. Lab Chip, 2015. 15(4): p. 1066-71.
17. Islam, M., et al., Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. Biomicrofluidics, 2016. 10(3): p. 033107.
18. Han, C.H., et al., Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci Rep, 2018. 8(1): p. 14942.
19. Swami, N., et al., Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip, 2009. 9(22): p. 3212-20.
20. Chen, D.F. and H.J. Du, A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis. Microfluidics and Nanofluidics, 2010. 9(2-3): p. 281-291.
21. Kang, K.H., et al., Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis, 2006. 27(3): p. 694-702.
22. Lewpiriyawong, N., C. Yang, and Y.C. Lam, Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics, 2008. 2(3): p. 34105.
23. Gallo-Villanueva, R.C., et al., Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics, 2011. 10(6): p. 1305-1315.
24. Srivastava, S.K., et al., A continuous DC-insulator dielectrophoretic sorter of microparticles. J Chromatogr A, 2011. 1218(13): p. 1780-9.
25. Demircan, Y., et al., Label-free detection of multidrug resistance in K562 cells through isolated 3D-electrode dielectrophoresis. Electrophoresis, 2015. 36(9-10): p. 1149-57.
26. Szydzik, C., et al., Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. Biomicrofluidics, 2015. 9(6): p. 064120.
27. Sadeghian, H., Y. Hojjat, and M. Soleimani, Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. Journal of Electrostatics, 2017. 86: p. 41-49.
28. Hajari, M., et al., Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow. Microsystem Technologies, 2019. 26(3): p. 751-763.
29. Weirauch, L., et al., Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. Biomicrofluidics, 2019. 13(6): p. 064112.
30. Fu, J., et al., A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nanotechnol, 2007. 2(2): p. 121-8.
31. 黃紹洋, 以正向應力及介電泳力在微流道中分離線形與環形DNA之研究, in 化學工程學研究所. 2021, 國立臺灣大學: 台北市. p. 180.
32. 蕭泓翊, 利用絕緣式介電泳於微流道中分離DNA之研究, in 化學工程學系. 2023, 國立臺灣大學: 台北市. p. 128.
33. Bentor, J., et al., Fluid rheological effects on streaming dielectrophoresis in a post-array microchannel. Electrophoresis, 2022. 43(5-6): p. 717-723.
34. Tabarhoseini, S.M., et al., Effects of Tween 20 addition on electrokinetic transport in a polydimethylsiloxane microchannel. Electrophoresis, 2024. 45(23-24): p. 2082-2086.
35. Zhou, J., et al., Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator. Nano Energy, 2021. 89: p. 106451.
36. Cha, H., et al., Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. Lab Chip, 2022. 22(15): p. 2789-2800.
37. Javi, F., et al., Sheathless inertial microfluidic cell separation via a serpentine-contraction-expansion device coupled with a combinatorial extraction regulator. Microfluidics and Nanofluidics, 2022. 26(7): p. 54.
38. Ahamed, N.N.N., et al., Fine-Tuning the Characteristic of the Applied Potential To Improve AC-iEK Separations of Microparticles. Anal Chem, 2023. 95(26): p. 9914-9923.
39. 利昀陽, 結合介電泳現象與微過濾去除溶液中低濃度奈米粒子之研究, in 化學工程學系. 2024, 國立臺灣大學: 台北市. p. 98.
40. Borók, A., K. Laboda, and A. Bonyár PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors, 2021. 11, DOI: 10.3390/bios11080292.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98684-
dc.description.abstract近年來,隨著生物分析需求的提升,微流體因具備體積小、樣品用量低、反應快速等優勢,漸漸成為分析化學與生醫領域中的重要工具。如何在微米尺度下操縱流體與懸浮物質的運動,是相關領域中重要的課題。介電泳(Dielectrophoresis, DEP)是一種藉由非均勻電場誘發粒子極化,進而操控其運動的現象,適用於帶電與不帶電的可極化粒子。由於其免標記和非接觸式操作的優點,介電泳被應用於物質的分離、濃縮及捕獲等用途。然而,介電泳效果取決於微流體裝置的構型設計以及電場配置,因此裝置的改良成為提升分離效果的挑戰之一。
本研究承接前人設計基礎,提出並且優化一種絕緣式介電泳分離裝置,核心結構採用水滴形設計,以產生不均勻電場並引發正介電泳力,促使粒子於通道中因介電泳而產生偏移,並在結構陣列中持續累積的偏移,以實現分離效果。本研究使用次微米尺寸的聚苯乙烯粒子作為目標分離對象,探討不同粒徑的粒子在各種電場條件下之偏移行為。由於在微米尺度下,即使是微小的結構幾何更動,也可能造成局部電場劇烈變化,進而導致粒子路徑的改變。本研究針對微流道設計進行多次調整,涵蓋流道截面尺寸、鞘流配置與結構陣列間距等參數,目的是在操作門檻與電場分布特性之間取得平衡,以兼顧分離效果與系統穩定性。
我們在研究中先透過COMSOL Multiphysics模擬分離裝置中的電場,以優化裝置幾何參數與電場設計。實驗部份則使用100nm、200nm、500nm和750nm之螢光聚苯乙烯粒子,在顯微鏡下觀測粒子在裝置中的移動情形和分離效果。
實驗結果顯示,粒子粒徑越大者所受之介電泳力越強,偏移效果也越明顯,由此成功實現不同粒徑粒子的分離。本研究驗證了水滴形結構對於粒子分離的效果,提供了一種可拓展至其他分子的分離技術,未來可應用於生醫分子、細胞或奈米粒子的高效率篩選與分析,展現其應用潛力。
zh_TW
dc.description.abstractIn recent years, the growing demand for bioanalytical applications has highlighted the advantages of microfluidic systems, including reduced sample volume, compact device size, and rapid reaction times. As a result, microfluidics has become an essential tool in analytical chemistry and biomedical engineering. A key challenge in this field lies in effectively manipulating fluids and suspended particles at the microscale.
Dielectrophoresis (DEP), a phenomenon in which polarizable particles are influenced by non-uniform electric fields, offers a label-free and non-contact method for particle manipulation. It is applicable to both charged and neutral particles and has been widely employed for separation, concentration, and trapping. However, the performance of DEP-based systems is highly dependent on device geometry and electric field configuration, making structural optimization critical for enhancing separation efficiency.
In this study, we build upon previous designs to propose and optimize an insulator-based dielectrophoresis (iDEP) device that features droplet-shaped structures. These structures induce non-uniform electric fields which lead to positive DEP forces, causing lateral displacement of particles as they traverse the channel. By arranging these structures in an array, cumulative displacement is achieved, enabling effective particle separation.
Submicron polystyrene particles with diameters of 100 nm, 200 nm, 500 nm, and 750 nm were used to evaluate the separation performance under various electric field conditions. Given the sensitivity of electric field distribution to microscale geometric changes, the microchannel design was iteratively refined. Key parameters—such as channel cross-section, sheath flow configuration, and spacing between structural elements—were adjusted to balance operational simplicity with electric field control, ensuring both separation performance and system stability.
Electric field simulations were conducted using COMSOL Multiphysics to guide the optimization of device geometry and voltage configurations. Experimental validation was performed by tracking the motion of fluorescent polystyrene particles under a microscope.
The results show that larger particles experienced stronger dielectrophoretic forces and more significant lateral displacement, confirming successful size-based separation. This work demonstrates the effectiveness of droplet-shaped structures in enhancing DEP-based separation and provides a scalable approach for sorting biomolecules, cells, or nanoparticles. The proposed design holds significant potential for future applications in biomedical analysis and high-throughput screening.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:05:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:05:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract V
目次 VII
圖次 X
表次 XX
第 1 章 、緒論 1
1.1 前言 1
1.2 研究動機 1
第 2 章 、文獻回顧 3
2.1 流體中常見的電動力學 3
2.1.1 電泳 3
2.1.2 電雙層 3
2.1.3 電滲流 5
2.1.4 電流熱效應 5
2.2 介電泳 7
2.2.1 介電泳簡介 7
2.2.2 介電泳力的推導 8
2.3 微流道中的介電泳效應 14
2.3.1 如何在微流道中製造介電泳 14
2.3.2 微流道中介電泳的應用 15
2.3.2.1 捕捉(Trapping) 16
2.3.2.2 濃縮(Concentration) 19
2.3.2.3 分離(Seperation) 22
2.4 本研究團隊先前建立之利用介電泳於微流道中分離DNA之結果 26
2.5 研究目的與實驗設計構想 32
2.5.1 分離裝置之設計構想 34
2.5.2 測定聚苯乙烯粒子之介電性質 36
第 3 章 、設備、材料與方法 39
3.1 實驗設備 39
3.2 實驗材料 41
3.3 微流道構型設計 42
3.4 通道製作 44
3.4.1 以熔融石英(fused silica)製作微流道 44
3.4.2 以PDMS製作微流道 52
3.5 溶液配置 57
3.6 裝置架設 58
3.7 結果收集與分析 59
3.7.1 粒子流動方向之定義 60
第 4 章 、結果與討論 61
4.1測定聚苯乙烯粒子之介電性質 61
4.1.1 漸縮微流道之流道構型與電場模擬分析結果 61
4.1.2 聚苯乙烯粒子介電泳效應測定結果 62
4.2 以熔融石英(fused silica)製作微流道裝置之粒子分離結果 64
4.2.1 設計一:原始設計裝置 64
4.2.1.1通道設計及電力線分布模擬結果 64
4.2.1.2實驗結果及改善措施 66
4.3以PDMS製作微流道裝置之粒子分離結果 67
4.3.1 設計二:加寬入口通道之裝置 67
4.3.1.1通道設計及電力線分布模擬結果 67
4.3.1.2實驗結果及改善措施 71
4.3.2 設計三:減少出口流道數量之裝置 75
4.3.2.1通道設計及電力線分布模擬結果 75
4.3.2.2實驗結果及改善措施 80
4.3.3 設計四:縮小分離區之裝置 84
4.3.3.1通道設計及電力線分布模擬結果 84
4.3.3.2實驗結果 87
4.3.3.3混和不同粒徑粒子之實驗結果 91
4.4 研究裝置總結 92
第 5 章 、結論與未來展望 94
第 6 章 、參考文獻 95
-
dc.language.isozh_TW-
dc.subject微流道zh_TW
dc.subject介電泳zh_TW
dc.subject絕緣式介電泳zh_TW
dc.subject粒子分離zh_TW
dc.subject水滴形結構zh_TW
dc.subjectParticle Separationen
dc.subjectInsulator-Based Dielectrophoresisen
dc.subjectDielectrophoresisen
dc.subjectMicrofluidicsen
dc.subjectDroplet-Shaped Structuresen
dc.title應用介電泳效應在微流道中分離粒子之研究:以水滴形結構產生不均勻電場為基礎zh_TW
dc.titleApplication of Dielectrophoretic Effects for Particle Separation in Microfluidic Channels Based on Non-Uniform Electric Fields Induced by Droplet-Shaped Structuresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙玲;黃振煌zh_TW
dc.contributor.oralexamcommitteeLing Chao;Jen-Huang Huangen
dc.subject.keyword微流道,介電泳,絕緣式介電泳,粒子分離,水滴形結構,zh_TW
dc.subject.keywordMicrofluidics,Dielectrophoresis,Insulator-Based Dielectrophoresis,Particle Separation,Droplet-Shaped Structures,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202504135-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved